上海沃埃得贸易有限公号/div>
首页 > 产品中心 > 其他 > 噪声实验装置
产品详情
噪声实验装置
认证信息
高级会员 2平/div> 称: 上海沃埃得贸易有限公号/b>
证:工商信息已核宝br /> 访问量:263408
手机网站
扫一扫,手机访问更轻杽/div>
产品分类

心室压力测量-容积测试分析系统-血流动力学Cereplex Direct在体多通道神经信号记录系统Cerebus多通道神经记录系统加拿大Aurora肌肉测试系统小老鼠无线脑电遥测系统电子皮肤燃料电池堆组装压力机三维可程式超声雾化喷涂机光束诱导电流成像检测系统激光诱导电流测量仪反射率测试仪闪光x射线系统LBIC激光诱导电流测试仪

活体双光子显微镜小动物活体双光子成像系统聚焦超声FUS小动物PET/CT成像Nanolive活细胞工作站小动物高磁场MRI

伽玛相机伽马射线成像谱仪核辐射无人机核辐射探测无人机邦纳多球中子谱仪移动式伽马中子环境监测仪

闪光X射线相机空气耦合超声超声波悬浮器中子照相系统MRI核磁共振成像激光干涉振动计ITS P2+电阻层析成像仪器

表面清洁度测试仪约瑟夫森电压标准系统德国Phystech RH2035霍尔效应测试仪器Hall8800霍尔效应测试仪器常温&液氮温度测试系统

虚拟外科手术模拟器手术VR模拟系统3D GAIT步态分析仪Aurora透性心肌细胞测试系?600AAurora肌纤维力学性能测试系统1400A

二氧化硫检测仪加拿大Resonance GCSO2二氧化硫气体相机Resonance二氧化硫气体分析仪检测仪LUMO测试-低能级反光电子能谱仪亚能带缺陷能谱仪微结构中子探测器NEC粒子加速器系统tec5 AG,超声波悬浮磁镊大面积电池热封机实验室微波炉临界点干燥仪

CITSensBio在线葡萄糖乳酸分析仪超声悬浮器AG空中声悬浮炉装置

综合超声虚拟训练系统达芬奇机器人手术模拟培训系统

可调控单波长实验用光照箱多波段光照稳定性试验箱

雷达散射截面测量系统太赫兹矢量网络分析仪

塞贝克效应测试仪

机器人TCP标定系统

金属纳米颗粒制备

Photek Velocitas VMI

区域熔融结晶仪器

德国LLA近红外光谱仪

放射性核素合成仪

弹性模量测试仪

铁磁共振

扫描开尔文探针系统

加拿大Resonance VUV真空紫外光源

燃料电池测试专用系统

公司品牌
品牌传达企业理念
产品简今/div>
噪声实验装置

  • 约翰逊噪声,“布朗运动”的电子检测和量化
  • 演绎玻尔兹曼常数+em>K乘/sub>,从约翰逊噪声对温度的依赖?/li>
  • 观察散粒噪声和量化,以衡量基本电荶em>'
  • 用于多种测量的前端低一级的电路配置
  • 调查的功率谱密度和电压噪声密度信号,他们的V / Hz和V /√Hz为单佌/li>
  • 应用傅立叶噪声密度噪声信号转换成数字化处理的方法
  • 探索放大,滤波的频率,平方和平均时间
  • 培养技能适用于整个测量科学的广度
噪音基本装置是一组工具,先进的和中间的实验室教学和学习有关电子噪声。在所有的电子信号中存在的噪声限制了许多测量的灵敏度。这,本身将是足够的理由来激励学习如何可以量化噪声。但是,电子噪音可以远远超过滋扰,或限制-兰道尔的一句名言,有时噪音的信号“。事实上,至少有两种情况,即噪声的测量可以得到的基本常数、/p>

通过集中处理和约翰逊噪声和散粒噪声测量,TeachSpin的噪声基础,让学生以确定双方玻尔兹曼常数,KB ,电子电荷的幅度?#39;E'、/p>

约翰逊噪?/strong>的波动电动势在任?*温度?> 0 电阻油然而生。Nyquist的预测是,这个电动势的均方服仍em>2'em>t)的> = 4KBTR DF +em>DF 噪声测量带宽。此结果使要测量的玻尔兹曻em>常数k乘/sub>、/p>

散粒噪声是衡量观察到的波动一定的电流,由于量化地对它们所加的粒度。在这种情况下,肖特的预测是一个直流电?em>成sub>直流服从另一均方有关的波动会伴随着,[成/em>'em>?/em>)]2> = 2??/em>成sub>直流DF。此结果使要测量的基本电荶em>??/em>的大小、/p>

从这些来源之一,还有更多的噪音,可以观察到,因为模块化,用户可配置的,我们的电子安排。本装置的信号流的透明布局使得它很清楚如何在实践中量化噪声,由于过程的放大,滤波的频率,平方和平均的时间,可以单独和详细理解。其结果是量化噪声的方法,和噪声密度,学生其实可以理解。这会产生一个便携式的一套适用于整个测量科学的广度技能 噪声测量在物理学的许多领域中有一个非常当前的应用程序、/p>

Introduction

  • Detect and quantify Johnson noise the ‘Brownian motion of electrons
  • Deduce Boltzmann’s constantkB from the temperature dependence of Johnson Noise
  • Observe and quantify shot noise in order to measure the fundamental charge ‗em>e‘/li>
  • Configure front-end low-level electronics for a variety of measurements
  • Investigate ‘power spectral density and ‘voltage noise density of signals and their V2/Hz and V/√Hz units
  • Apply Fourier methods to digitally process noise signals into noise densities
  • Explore amplification filtering-in-frequency squaring and averaging-in-time
  • Develop skills applicable across the breadth of measurement science
TeachSpin's Noise Fundamentals is a set of tools for teaching and learning about electronic noise in the advanced and intermediate laboratory. The noise present in all electronic signals limits the sensitivity of many measurements. That in itself would be reason enough to motivate learning how noise can be quantified. But electronic noise can be much more than a nuisance or a limit -- in the famous phrase of Landauer sometimes ‘noiseisthe signal? In fact there are at least two cases in which the measurement of noise can give the values of fundamental constants.

By concentrating on the processing and measurement of Johnson noise and shot noise TeachSpin’s Noise Fundamentals allows students to determine both Boltzmann’s constantkB and the magnitude of the charge on the electron ‗em>e?

Johnson noiseis the fluctuating emf which arises spontaneously in any resistor at absolute temperatureT> 0. Nyquist’s prediction is that the mean square of this emf obeys <V2(t) > = 4kBT RDf where Dfis the bandwidth over which noise is measured. This result allows Boltzmann’s constantkBto be measured.

Shot noiseis a measure of the fluctuations observed in certain currents due to the granularity imposed on them by the quantization of charge. In this case Schott’s prediction is that a dc currentidcwill be accompanied by fluctuations obeying another mean-square relation < [i(t)]2> = 2e idcDf. This result allows the magnitude of the fundamental chargeeto be measured.

Noise from either of these sources and many more can be observed because of the modular and user-configurable arrangement of our electronics. The transparent signal-flow layout of our apparatus makes it very clear how noise is quantified in practice since the processes of amplification filtering-in-frequency squaring and averaging-in-time can be understood separately and in detail. The result is a method for quantifying noise and noise densities that students can actually understand. This generates a portable set of skills applicable across the breadth of measurement science.

  • 推荐产品
  • 供应产品
  • 产品分类