本文将通过对马尔文帕纳科两款纳米颗粒表征设备NTA和DLS在测量颗粒粒径上的相同点和区别点,为您选择符合技术标准的不同技术用于纳米药物质量控制研究中的颗粒表征提供有意义的指导、/p>
相关技术标准中的粒度表征技?/strong>
为规范和指导纳米药物研究与评价,在国家药品监督管理局的部署下,药审中心组织制定了《纳米药物质量控制研究技术指导原则(试行)》等三项关于纳米药物研究、质控、评价的技术指导原则。其中《纳米药物质量控制研究技术指导原则》主要内容是围绕着纳米药物的安全性、有效性以及质量可控性展开的。在这三个方面,质量的可控性显得尤为重要,它一定程度上决定了药物的安全性和有效性、/p>
在粒径表征方面,该指导意见关于粒径表征的相关表述如下:“应选择适当的测定方法对纳米药物的粒径及分布进行研究,并进行完整的方法学验证及优化。粒径及分布通常采用动态光散射法(Dynamic light scattering,DLS(/strong>进行测定……粒径分布一般采用多分散系数(Polydispersity index,PDI)表示。除此之外,显微成像技术(如透射电镜(Transmission electron microscopy,TEM)、扫描电镜(Scanning electron microscopy,SEM)和原子力显微镜(Atomic force microscopy,AFM)?strong>纳米颗粒跟踪分析系统'/strong>Nanoparticle tracking analysis, NTA)、小角X射线散射'/strong>Small-angle X-ray scattering,SAXS(/strong>和小角中子散射(Small-angle neutron scattering,SANS)等也可提供纳米药物粒径大小的信息。“/p>
注:本文介绍的两种纳米颗粒表征技?/em>
如何选择合适的颗粒表征技术呢>/strong>
那么,测量纳米级颗粒粒径该如何选择合适的技术呢?本文将着重给大家讲一下NTA和DLS在测量颗粒粒径上的相同点和区别点,方便大家更好的去选择不同的技术、/p>
DLS技术利用分散在溶液中的纳米颗粒的布朗运动测量颗粒粒径,其粒径检测范围在0.3nm-10μm之间、/p>
NTA技术利用激光照射溶液中的悬浮纳米颗粒,后者产生的散射光被高灵敏度的相机捕获并成像。由于该技术是单颗粒跟踪技术,所以能提供极高精度的颗粒粒度的数量分布,既适合分析粒度分布较窄,也适合分析粒度分布较宽的样本,其粒径检测范围在10-1000nm之间、/p>
我们?00nm?00nm的聚苯乙烯颗粒(PS)标准品为考察对象。研究NTA DLS两种技术分别在粒径窄分布和宽分布的样品上的测量差异、/p>
? NTA和DLS测量窄分布样品合并图(上)和宽分布样品合并图(下(/strong>
从图上可以看出,DLS和NTA都能很好的表征粒径窄分布的样品,且其平均值及主峰值都十分接近,但是NTA得到的粒径分布峰更窄,这也和其采用的单颗粒跟踪技术相符合。右图明显可以看到DLS对体系中的大颗粒更敏感,而NTA对体系中大、小颗粒的敏感程度较为接近。总体来说,NTA的粒径分辨率能达?:1.3,而DLS的粒径分辨率最低只能到1:3。MADLS (多角度动态光散射)技术是马尔文帕纳科专为Zetasizer Ultra系列产品开发的新技术。MADLS可从多个光散射角度对样品进行自动全面分析,提供更高的分辨率,为样品提供更完整的视角、/p>
下图以脂质体为例,分别用NTA和MADLS技术测量样品粒度,可以看到二者测得的粒径均值及主峰值都十分接近,MADLS得到的粒径分布峰也和NTA同样窄、/p>
? 脂质体样品的粒度分布,上图为马尔文帕纳科NanoSight的测量结?下图为马尔文帕纳科Zetasizer 的测量结果、/span>
MADLS和NTA两种技术互补:MADLS可在较宽范围内快速获得包括粒径、颗粒浓度等信息,几乎不需要样品的前处理;NTA则可用于获得粒径分布更多的细节,用于颗粒浓度分析时,测量下限也更低。在两种技术重叠的测量范围内,获得的结果也高度一致、/p>
马尔文帕纳科MADLS和NTA技术今年又再添新品,Zetasizer 智能样品助手,可实现无人值守过夜测量,解放研究人员的双手;NanoSight Pro新一代纳米颗粒跟踪分析仪,通过神经网络人工智能算法加持,实现对脂质体(LNP)、外泌体和细胞外囊泡(EV)等样品的高分辨率的粒径和浓度检测。感兴趣的老师可观看新品发布回放,了解更多内容?gt;>>关注马尔文帕纳科微信公众号,获取回看链接、/p>
1149
- EVA型热熔胶书刊装订强度检测与质量控制研究
- 自动热压机的发展趋势是怎样的?
- 用户论文 ▏化学吸 ▏铱-铼共沉积乙醇处理后SiO2载体催化剂应用在甘油氢解反应
- 为什么近期单壁碳纳米角(CNH)的研究进展值得关注>/a>
- 为什么介孔SiO2在药物递送领域的应用越来越多>/a>
- FRITSCH飞驰球磨——不锈钢介导的水中球磨条件下定量H2生成实验研究
- 为什么MoS2在催化领域的研究进展值得关注?
- 飞纳台式扫描电镜助力纳米纤维在心血管组织再生中的研穵/a>
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应?/a>
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机刵/a>
- 压实度与密实度的区别
- 振实密度和压实密度的关系
- 勃姆石专用气流粉碎机分级机打散机
- 国产新品泡沫起升仪可替代德国format
- 国内首个他达拉非新剂型获扸/a>