理论上,硅具?0倍于碳材料的嵌锂容量,且价格低廉,将硅与碳制备成复合硅碳负极,能够把硅与碳的优势互补,提高锂离子电池的能量密度。相比传统的石墨负极,目前碳硅负极被认为是“下一代”锂电负极材料,各大锂电负极制造商都已经开展布局碳硅负极材料、/p>
电极材料的比表面信息对于锂离子电池的电化学性能、工作性能等有着重要的意义。本文将分享硅碳负极比表面数据,对不同的负极材料一探究竟、/p>
根据不同工艺方法制备的硅碳负极,其比表面的大小也相差巨大,硅碳负极颗粒的比表面可以小?m2/g,而有些可以大?00m2/g。Micromeritics亚太演示实验室近期测试了市面上某硅碳负极材料的两种样品,使用Tristar II Plus比表面积与孔径分析仪对该样品在液氮(77K)温度下进行了氮气物理吸附实验、/p>
?:样?在相对压?.05-0.3区间的吸附等温线
?:样?在相对压?.05-0.3区间的吸附等温线
使用Tristar II Plus比表面积与孔径分析仪分别对两个硅碳负极样品进行了6轮测试。通过77K下氮气的吸附以及在相对压力(P/P0)为0.05-0.3范围内的等温线数据,结合6点BET方法可以快速计算得到这2个样品的BET比表面数值、/p>
?:碳硅负极比表面(m2/g)测试结枛/strong>
以上两个硅碳负极样品脱气条件为:200度下2小时真空脱气。测试样品管口径?/8英寸,使用了填充棒降低样品管背景空间以提高信噪比、/p>
由表1可见,两个硅碳负极样品的比表面不大,均在2左右且相当接近。Tristar II Plus比表面积与孔径分析仪?个样品分?轮测试结果的平行性很好,重复性很高,相对标准差均小于千分之五。使?7K氮气吸附,在相对压力0.05-0.3的范围内,通过6点BET方法,可以很稳定的精确计算出低比表硅碳负极材料的比表面数值、/p>
另外,从等温线数据可以看出,两个样品在相对压力为0.1处的累计吸附量很小,均不?.6 cc/g(STP)。一般来说,当相对压力达?.1时,微孔填充已经达到饱和,所以在相对压力?.1处较低的累计吸附量可能预示着材料不含或含有很少的微孔,结合两个样品较低的比表面积,粗略判断两个硅碳负极样品为大孔或无孔材料。如果需要对孔径大小作准确的判断,建议可以对材料做完整的吸脱附等温线,从而得到完整的孔径分布、/p>
在锂离子电池研发生产不断升级、更替迭代的大环境下,了解材料性质对研究有着重要影响,Micromeritics致力于为锂离子电池的研究工作提供专业支持,如您有相关材料需要研究或测样,欢迎联系我们,与我们的专业应用科学家团队进行交流、/p>
关于麦克默瑞提克
Micromeritics 是提供表征颗粒、粉体和多孔材料的物理性能、化学活性和流动性的全球高性能设备生产商。我们能够提供一系列行业前沿的技术,包括比重密度法、吸附、动态化学吸附、压汞技术、粉末流变技术、催化剂活性检测和粒径测定、/p>
公司在美国、英国和西班牙均设立了研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。Micromeritics 的产品是全球具有创新力的知名企业、政府和学术机构旗下 10,000 多个实验室的优选仪器。我们拥有世界级的科学家队伍和响应迅速的支持团队,他们能够将 Micromeritics 技术应用于各种要求严苛的应用中,助力客户取得成功、/p>
2317
- 致密化压力对石榴石固态锂电池成型和性能的影哌/a>
- EVA型热熔胶书刊装订强度检测与质量控制研究
- 自动热压机的发展趋势是怎样的?
- 用户论文 ▏化学吸 ▏铱-铼共沉积乙醇处理后SiO2载体催化剂应用在甘油氢解反应
- 为什么近期单壁碳纳米角(CNH)的研究进展值得关注>/a>
- 为什么介孔SiO2在药物递送领域的应用越来越多>/a>
- FRITSCH飞驰球磨——不锈钢介导的水中球磨条件下定量H2生成实验研究
- 为什么MoS2在催化领域的研究进展值得关注?
- 磷酸化修饰鬼臼果多糖的制备及生物活?/a>
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应?/a>
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机刵/a>
- 压实度与密实度的区别
- 振实密度和压实密度的关系
- 勃姆石专用气流粉碎机分级机打散机