纳米材料是指在三维空间中至少有一维处于纳米尺?1-100 nm)或由它们作为基本单元构成的材料。由于它的尺寸很小,会产生很多特殊的效应,比如小尺寸效应、隧道效应以及大的比表面积效应等,因此使得纳米材料表现出不同的物理化学特性,例如熔点、磁性、光学、导热、导电特性等等,因而现在纳米材料被广泛应用于医药、化工、冶金、电子、机械、轻工、建筑及环保等行业。但由于其颗粒非常小,因此颗粒大小的检测也就成为了挑战,国际上对于超细颗粒的粒度测试一般有三种方法,即电子显微镜、动态光散射以及激光衍射、/p>
1.电子显微镛/p>
电子显微镜技术的应用是建立在光学显微镜的基础之上的,它是利用电子束照射在颗粒上,然后通过电子透镜放大得到的图片。电镜的优点是结果直观,能够直接“观察”到所测颗粒,而且分辨率极高,但由于其放大倍数较高,因此采集的颗粒有限,取样代表性风险较高,同时高能的电子束可能破坏某些样品比如蛋白、颜料的结构、/p>
2.动态光散射技?/p>
在溶液中悬浮的颗粒由于无规则运动会发生布朗运动。一般颗粒越小,运动速度越快,动态光散射技术利用悬浮颗粒在溶剂体系中做布朗运动的原理,通过检测颗粒的扩散速度,从而利用斯托克?爱因斯坦方程计算出颗粒的大小和粒度分布、/p>
该技术优点是测试下限较低,对于极小的窄分布颗粒测试效果较好,同时所需样品较少,可以在悬液状态下直接测试样品并给出分布,测试速度较快。但由于该技术基于颗粒的布朗运动,一旦有大的颗粒在体系中,这些大的颗粒可能就会发生沉降从而导致测试结果错误,同时该技术是基于统计的光强变化来做数据处理,对于宽分布的样品测试结果有风险、/p>
动态光散射技?/p>
3.激光衍射技?/p>
激光衍射技术主要利用的是光照射到颗粒后产生的衍射现象,不同大小的颗粒将会在空间形成不同的衍射条纹,一般来说,颗粒越小散射角越大,因此通过放置一系列检测器,检测不同角度的光散射强度,从而通过米氏理论反演计算出颗粒的粒度分布,如下图9/p>
该技术的优点是测试范围宽,速度较快,取样代表性好,尤其是对于宽分布样品有比较好的测试效果。而恰恰很多纳米颗粒由于粒径很小,很容易产生二次团聚结构,这样就会形成小颗粒和团聚体大颗粒共存的情况,这恰恰是激光衍射技术擅长的地方。但其缺点是小颗粒散射光强非常弱,信噪比较低,同时颗粒越小,对其折射率等光学参数准确性要求越高,这就会给小颗粒测试带来风险、/p>
4040
- EVA型热熔胶书刊装订强度检测与质量控制研究
- 自动热压机的发展趋势是怎样的?
- 用户论文 ▏化学吸 ▏铱-铼共沉积乙醇处理后SiO2载体催化剂应用在甘油氢解反应
- 为什么近期单壁碳纳米角(CNH)的研究进展值得关注>/a>
- 为什么介孔SiO2在药物递送领域的应用越来越多>/a>
- FRITSCH飞驰球磨——不锈钢介导的水中球磨条件下定量H2生成实验研究
- 为什么MoS2在催化领域的研究进展值得关注?
- 飞纳台式扫描电镜助力纳米纤维在心血管组织再生中的研穵/a>
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应?/a>
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机刵/a>
- 压实度与密实度的区别
- 振实密度和压实密度的关系
- 勃姆石专用气流粉碎机分级机打散机
- 国产新品泡沫起升仪可替代德国format