www.188betkr.com 讯随着便携式电子设备和电动汽车等产业的快速发展,人们对高能量密度电池的需求日益迫切,然而在传统锂离子电池中,正极材料因“插层式”的储锂机制导致其容量普遍较低,无法满足快速增长的市场需求。因此,新型高能量密度二次电池的探索和研发成为了储能领域的研究热点,锂硫电池就是其中之一。
一、锂硫电池简介
锂硫电池的工作原理基于硫和Li+可以发生可逆的氧化还原反应,两者之间的电化学反应式如下:
基于该反应的硫正极的理论比容量高达1675mAh/g,是传统锂离子电池正极材料的10 倍,同时硫储量丰富、成本低,因此锂硫电池受到了广泛关注,然而硫及多硫化物本身性质的缺陷,使得锂硫电池仍存在很多问题。
首先,硫是绝缘体,导电性差,给电荷传递过程带来困难;其次,多硫化锂可以溶解在电解质中,易迁移到金属锂一侧被还原成不溶性Li2S沉积在金属锂电极表面发生“shuttle effet”现象;再次,可溶性多硫化锂被完全还原成不溶性硫化物时,会阻碍电子和离子的有效传输;最后,单质硫转化为不溶性硫化物后,由于两种物质密度的差异,会造成体积效应,降低电极稳定性。因此,锂硫电池存在实际容量低、循环性能差和信率性能不佳等缺点。
二、石墨烯在锂硫电池中的应用
针对上述问题,为了获得高性能的锂硫电池,研究者对硫正极进行了多种手段的复合与改性研究,设计并制备了一系列具有新颖结构和优异性能的复合硫正极材料。其中,碳材料因其导电性高、结构丰富、比表面积大等优势而得到了广泛应用,而石墨烯这一新型碳材料在提升锂硫电池性能方面有优异表现。
石墨烯是优异的电子导体,同时具有机械强度高、比表面积大等优点,同时化学改性的石墨烯及石墨烯衍生物具有一系列能为负载提供诸多活性位点的表面官能团,因此石墨烯在复合硫正极材料中得到了广泛的应用。
一方面,石墨烯被用作硫正极的导电载体,弥补硫导电性差的缺陷;另一方面,通过合理的结构设计与表面改性,石墨烯还能够抑制多硫化物的溶解。此外,在最近的研究中,科学家还发现通过石墨烯功能涂层的设计,能够减缓多硫化物在正负极之间的穿梭,抑制“shuttle effet”现象。
1、石墨烯/硫复合正极材料研究进展
石墨烯极高的电导率可以弥补硫颗粒导电性差的问题,因此石墨烯材料多被设计成负载硫单质的导电基体或者导电网络,比如石墨烯泡沫结构可实现石墨烯与硫在纳米尺度的均匀复合,能够为硫提供快速与高效的电子传输通道,同时纳米孔还能够有效束缚多硫化物。
常规条件下获得的三维石墨烯尽管结构丰富,但极为蓬松,表观密度很低,导致硫负载后复合电极材料体积能量密度严重不足,为此,中科院沈阳金属所成会明院士利用CVD方法在泡沫镍上获得三维多孔石墨烯泡沫。
图1 (a)柔性石墨烯/硫复合材料的制备流程;(b、c、d、e)石墨烯/硫复合电极材料照片及柔性展示
该方法不仅能够负载高比例的硫,而且硫的含量能够在3.3~10.1mg/cm2范围内进行调控,特别是负载量为10.1mg/cm2的电极,能够获得极高的比面积容量(13.4mAh/cm2)。
另外,考虑到石墨烯独特的二维片状纳米结构,采用以石墨烯纳米片作为包裹材料,构筑具有“核壳”结构的复合电极材料也是固定多硫化物,缓解其溶解的重要方式。先在碳纳米纤维表面均匀负载上硫,再使用石墨烯包覆在硫表面是一种很有效的方法。
图2 具有同轴结构石墨烯/S/碳纳米纤维复合电极制备图
2、石墨烯功能涂层在锂硫电池中的应用
为提高锂硫电池的循环稳定性,除了对硫正极材料的组成与结构进行调控以抑制多硫化物的溶解,通过极片结构的设计来减弱“shuttle effect”也是一条重要途径。例如,在硫正极和隔膜间添加一层缓冲层能够极大的提高锂硫电池的寿命。
图3 石墨烯隔膜涂层有效阻挡多硫化物迁移示意图
石墨烯/硫/石墨烯-隔膜的创新极片结构设计,一方面将集流体由传统的Al箔改为石墨烯;另一方面对隔膜进行改性,改变了原有隔膜与硫正极直接接触的方式,在隔膜表面涂布一层石墨烯材料。
采用传统的极片结构,在循环过程中多硫化物溶解在电解液后,会穿过隔膜进入金属Li一侧,而在这一新颖结构中,存在于隔膜与正极材料之间的石墨烯层能够有效阻止多硫化物的迁移。另外,由于石墨烯材料优异的力学性能,石墨烯改性隔膜能够有效缓解硫正极在充放电过程中的体积变化,保持极片结构的完整性。
综述:
电化学储能在当今人们的生产生活中占有重要地位,无论是可再生能源的大量存储还是便携式设备的高密度存储,对电化学储能器件和材料的成本、储能密度、稳定性等指标都提出了较高的要求。
锂硫电池由于其理论比容量、比能量高,原料价廉易得,在未来电化学储能领域中将极具竞争力,如果通过石墨烯的应用能够改善锂硫电池实际容量低、循环性能差和信率性能不佳等缺点,在不远的将来,锂硫电池的表现可能会给我们带来更多惊喜。