金牌会员
已认?/p>
复合机流体技术背?/strong>
复合集流体是一种“三明治”结构,内层为聚合物高分子层(如PET、PP或PI),两侧为金属导电层(如Al或Cu),如图1为复合集流体结构示意图。目前工业量产的复合集流体中复合铜箔集流体采?.5μm OPP(聚丙烯)作为基材,先在基材两面磁控溅射?0nm铜层,再在铜层表面进行水电镀,加厚铜层至1μm左右。而复合铝箔集流体通常采用6μm的PET(聚对苯二甲酸乙二醇酯)作为基材,然后在基材两面蒸镀?μm铝层。复合集流体的结构示意图如图1所示、/p>
?.复合集流体结构示意图
复合集流体与传统集流体的对比
优势9/strong>相比传统的铜箔和铝箔,复合材质的铜箔和铝箔带来两方面的收益:安全和成本、/p>
安全收益9/strong>相比传统的单一集流体,复合集流体中间的基膜材质,就像保险丝一样,当遇到短路这种失效模式时,可以快速的断裂或者融化,从而阻断进一步传导电流,最终阻止了电芯的燃烧、/p>
成本收益9/strong>电池铜箔的供应价格在2021年一直维持紧张的态势,扩产周期长,市场需求存在缺口。目前的复合铜箔集流体制造成本较高,与单一材质的铜箔相比,价格并不占优势。但后期如果规模化之后,成本有望降低。除了BOM成本少之外,复合铜箔集流体带来的另外一个好处是因为减重使电池质量能量密度提升。此外,复合铝箔集流体成本优势更明显,复合铝箔集流体厚度只有单一铝箔厚度的一半, 复合铝箔集流体因为减薄使电池体积能量密度提升、/p>
?.复合铝箔集流体示意图
劣势9/strong>复合集流体相比与传统集流体存在以下的劣势9/p>
箔材穿孔。金属在磁控和蒸镀到PET材料过程中因为有高温的金属熔融物,可能飞溅熔穿箔材形成通孔、/p>
存在产能瓶颈。由于磁控和蒸镀的节拍限制,目前复合箔的单位设备效率不及传统箔材,这在产品放量的过程中会存在明显瓶颈、/p>
电池内阻增大,电池的输出功率受影响。相比于金属箔,复合箔的PET不导电,导电金属层厚度明显降低,存在较大的电子电阻,同时由于阻燃剂等介质的引入,电池的电阻会有所增加、/p>
电池制造需新增工序。因为PET材料的引入,常规的电池生产工艺无法直接平移。在极片制作过程中,需要至少增加一个转接焊工序,用来制造极片的极耳,电池的制造成本会增加、/p>
复合集流体电学性能评估
电池极片复合集流体与传统集流体相比,其电阻率较高的主要原因可能有以下几点9/p>
材料选择9/strong>电池极片复合集流体通常采用多种材料的复合结构,这些材料可能不如传统集流体中单一材料的导电性能优秀,导致整体的电阻率升高、/p>
结构设计9/strong>电池极片复合集流体的结构设计可能较复杂,例如为了提高集流体的机械强度或者其他特性,可能会在材料中添加一些绝缘性质的成分,从而增加了电阻率、/p>
制造工艺:复合集流体的制造工艺可能相对复杂,难以保证每个部分的均匀性和一致性,造成了电阻率的不均匀分布、/p>
电学实验方案设计
实验设备:型号BER2500(IEST元能科技),电极直径14mm,设备如?(a)和3(b)所示、/p>
?.BER2500设备外观和结构示意图
将待测传统集流体与复合集流体放置于极片电阻仪两电极之间,在MRMS软件上设置测试压?MPa,保压时?5s,开始测试。软件自动读取极片厚度、电阻、电阻率、电导率等数据、/p>
数据分析
通过测试复合集流体厚度和电阻率数据结果显示:本实验选取的复合集流体的厚度比传统集流体的厚度要小,其中铜箔复合集流体的厚度是最小的。复合集流体的纵向穿透电阻率远高于传统集流体,其中铝箔复合集流体的电阻率是最大,高于铜箔集流体一个数量级,这主要是由于“三明治”结构的中间层多为低导电性的聚合物高分子层、/p>
?.四种不同集流体的电阻率和厚度测试数据
复合集流体力学性能评估
力学试验方案:裁相同尺寸2cm×3cm的四种集流体,固定在同一位置。使用钢针以恒定速率下压检测不同集流体的极限力学性能。测试结果如下、/p>
?.四种集流体针刺实验结果对毓/span>
针刺实验结果显示,单位厚度下复合铝箔集流体的强度相比传统铝箔集流体有明显的提升,而单位厚度下复合铜箔集流体强度与传统集流体稍有提升、/p>
?.四种集流体针刺实验数据对毓/span>
小结
据东方财富网报道,当前复合集流体行业处于从验证期导入到量产期的阶段,凭借高安全、高比能、低成本、长寿命、强兼容等突出优势,复合集流体的产业化诉求进一步提升。但不得不承认的是,复合集流体长期渗透仍需看工艺改进与降本进度。其中导电性能上,复合后的集流体电子导电性能变差、导热性变差;其会直接影响最终电池的电性能。但从安全角度看,复合后的集流体力学强度有所提升,可有效降低传统集流体可能带来的一些安全隐患,整体提升电池在使用过程中的安全性、/p>
参考文?/strong>
[1]汪茹,刘志?严超,?高安全锂离子电池复合集流体的界面强化[J].物理化学学报, 2023, 39(2):81-92.
[2]刘松;侯宏苰胡文;刘显茛段继?孟瑞?锂离子电池集流体的研究进展[J].硅酸盐通报, 2015, 34(9):2562-2568.
[3]王成?李学?张国?铝复合集流体及其制备方法,正极?电池和用电装?CN202210827592.9[P].CN202210827592.9[2023-10-07].
[4]王帅,朱中?夏建??一种复合集流体软包电池壳体,软包电池及软包电池模练CN202211623631.X[P].CN116169403A[2023-10-07].
- 电化学性能分析?/a>
- 原位产气体积监控?/a>
- 硅基负极膨胀原位快筛系统
- 原位膨胀分析系统
- 粉末压实密度?/a>
- 电解液浸润性测试系绞/a>
- 极片电阻?/a>
- 粉末电阻?压实密度?/a>
- 粉末电阻率&压实密度仪PRCD3000
- 极片集成检测一体机
- 自动电压内阻测试?/a>
- 压力分布测量系统
- 圆柱电池体积膨胀原位测试系统
- 电池一致性筛分仪
- 原位多通道存储产气测试系统
- 电解液浸润性测试系绞/a>
- 压实密度测试模具
- 浆料电阻?/a>