8 平/span>

白金会员

已认?/p>

我国在大规模制备生物相容性良好的石墨烯上取得新进展!

为了提高剥离体系的优越性,吕强教授团队通过对丝蛋白纳米结构的设计,引入丝蛋白纳米纤维作为石墨烯剥离的稳定剂,制备了浓度可达8mg mL-1的石墨烯分散液。同时由于丝蛋白纳米纤维的高负电性以及良好的生物相容性,使石墨烯分散液保持长时间稳定性以及低的细胞毒性、/span>

石墨烯由于其优异的力学、光电性能和高的比表面积,在组织工程、药物传递、生物成像等领域得到了广泛的关注。在生物良性条件下简单地进行石墨烯的大规模制备是这些生物应用的首要条件。目前,研究者们通过液相剪切剥离石墨的方法成功进行了石墨烯的规模化生产。并且一些生物大分子如蛋白质、多肽等已被成功用于制备石墨烯分散体系,但是这些生物分子的稀有来源和昂贵的价格限制了石墨烯的大规模生产。因此如何通过简单、经济的方法制备石墨烯并且得到较高的浓度和产量需要进一步研究、/span>


  /span>为了提高剥离体系的优越性,吕强教授团队通过对丝蛋白纳米结构的设计,引入丝蛋白纳米纤维作为石墨烯剥离的稳定剂,制备了浓度可达8mg mL-1的石墨烯分散液。同时由于丝蛋白纳米纤维的高负电性以及良好的生物相容性,使石墨烯分散液保持长时间稳定性以及低的细胞毒性、/span>?展示了用丝蛋白纳米纤维(SNFs)剥离石墨烯的示意图。在液相环境下,高速剪切作用将石墨剪切成石墨烯片层,丝蛋白纳米纤维通过疏水作用附着在石墨烯表面,高的负电性使得分散体系保持稳定而不聚集。并且,高速离心可去除大部分丝蛋白纳米纤维,得到纯的石墨烯分散液、/span>

?. 用丝蛋白纳米纤维剥离石墨烯的制备流程

该团队进一步优化了不同条件(SNF浓度、石墨浓度、溶液体积、剥离时间以及搅拌速率)以得到高浓度的稳定分散的液相石墨烯(?) 最终在石墨浓度20 mg mL-1, SNF 5 mg mL-1,剥离时? h,搅拌速率45 krpm的条件下得到了浓度大? mg mL-1、产率大?0%的石墨烯分散液,为大规模生产石墨烯提供了有希望的途径、/span>

?. 石墨烯浓度与不同影响因素之间的关系:(A)丝蛋白纳米线的浓度(B)石墨的浓度(C)转速(D)剥离时间(E)体?/span>

?.石墨烯片层微观形态的分析?A)石墨烯的TEM图像?B)石墨烯片层横向尺寸的统计;(C)石墨烯的AFM图像;(D)石墨烯片层的高度统讠/span>

 /span> 接下来,研究团队通过TEM和AFM表征了石墨烯的微观形态(?)。石墨烯的横向尺寸在100-800 nm分布,高度在1-4 nm,为少层的石墨烯、/span>

?. (A)与石墨烯共培?4h后的细胞荧光图像,标尹150μm?B)细胞与石墨烯共培?4h的CCK-8结果;(C)石墨烯涂覆的纸的截面和表面SEM图像;(D)通过发光二极管验证的石墨烯的导电?/span>

  /span>优质的大规模生产,生物友好的制备方式以及低缺陷的的少层结构使得石墨烯在生物医学中具有良好的应用前景。结合丝蛋白纳米纤维优异的生物相容性,该研究用石墨烯分散液培养骨髓间充质干细胞(BMSCs),评价体外细胞相容性。CCK-8测试结果表明,在与石墨烯共培?4h之后,细胞仍保持良好的活性(80%)。该团队制备的石墨烯的导电性为 1100 S m ?1 ,以及通过发光二极管、电池、石墨烯涂覆纸验证了它的高导电性、/span>


  以上相关成果发表在ACS Appl.Mater.Interfaces(DOI:10.1021/acsami.8b04777)上。论文的第一作者为苏州大学纺织学院硕士研究生生张筱旖,通讯作者为苏州大学的吕强教授、/span>


鸿凯智能 2018-07-18 | 阅读?223

分类

虚拟号将秒后失效

立即拨打

为了保证隐私安全,平台已启用虚拟电话,请放心拨打
(暂不支持短信)

×
是否已沟通完戏/div>
您还可以选择留下联系电话,等待商家与您联糺/div>

需求描?/p>单位名称

联系亹/p>

联系电话

已与商家取得联系
同意发送给商家
留言咨询

留言类型

需求简?/p>

联系信息

联系亹/p>

单位名称

电子邮箱

手机叶/p>

图形验证?/p>

点击提交代表您同愎a href="//www.znpla.com/m/service/registrationagreement.html" target="_blank">《用户服务协议《/a>叉a href="//www.znpla.com/m/about/privacy.php" target="_blank">《隐私协议《/a>