金牌会员
已认?/p>
球磨时间寸/span>BC干粉灭火剂形态特征影响的研磨方案
为了探究球磨时间寸/span>BC干粉灭火剂形态特征的影响机理,以常用皃/span>BC干粉灭火剂为原料,硬脂酸镁为表面改性剂,采用机械粉磨法对其进行粉磨,并测定其形态特征、/span>结果表明,当球磨时间丹/span>0.5}/span>4 h时,粉体表观中位粒径呈现先减小后增大的趋势,粉体形貌由较为松散的团聚体变为较密实的球形团聚体,转折点为球磨时闳/span>2 h,球磨工艺的最优表观中位粒径为3.82 μm,最佳球磨时间为2 h,极限粒径约丹/span>0.9}/span>1.2 μm、/span>
粉体是最常见的灭火剂之一,尤其是近年来随着哈龙等卤代烷灭火剂的停止使用,粉体灭火剂需求量不断增大,应用领域不断扩展,已成为较优异的哈龙灭火剂的替代品、/span>目前常用的干粉灭火剂为灭火基料、防潮剂、润滑剂等的混合物,通常使用的防火基料为小苏打、碳酸铵、磷酸的铵盐等、/span>普通干粉灭火剂粒径通常?/span>60 μm左右,相比较而言,颗粒粒度较大,比表面积小,易沉降,且分解较慢,因此灭火效率较低+/span>限制了干粉灭火剂的使用、/span>超细干粉灭火剂为微米级干粉灭火剂,由于其粒径较小,弥散性较强,比表面积较大,表面活性较高,单个粒子较轻,沉降较慢,受热时分解快,捕捉自由基的能力较强,灭火效率优于同等条件下普通干粉灭火剂皃/span>[3-5]、/span>近年来,制备粒径较小、分散均匀的粉体灭火剂逐渐成为国内外火灾防治研究的热点问题之一,采用的细化方法主要有机械细化法、气流破碎法、喷雾干燥法筈/span>[6-12],但是气流破碎法及喷雾干燥法制备过程中能量消耗较大,这将致使产品生产成本增大,难以推广和普及;而机械破碎法,如球磨粉碎所需设备及工艺参数简单,制备时能耗较小(通常情况下节能量约为30%}/span>40%[13]),
目前已广泛用于超细粉体制备、机械力化学等领域,是我国目前最常用的一种细化方法、/span>近几十年来,国内外研究者就球磨参数对粉体形貌的影响开展了研究、/span>Kelsall筈/span>[15-18]研究了球磨停留时间分布、磨球直径、助磨剂密度等对湿磨效率的影响,结果表明改变磨球直径主要影响平均停留时间及某一粒径的一阶破碎率常数,而对无量纲的瞬间破碎函数或停留时间影响不大、/span>Schilz筈/span>[19]研究了行星球磨机运行时球磨参数对热电半导体材料如Si-Ge?/span>Mg2Si?/span>Mg2'/span>Si+/span>Sn(/span>合金形成的影响,结果表明磨球形状?/span>角速度是影响球磨性能的主要因素、/span>郝保红等[20]研究得出石英粉在干磨和湿磨以及钢球干磨条件下的粉碎极限,并指出可通过改变粉碎条件来控制粉碎极限,延缓粉碎平衡、/span>
颜景平等[21]对行星球磨机最佳参数进行理论分析,得出行星球磨机的最佳转速、最佳装载率、最佳料球比、破碎速度、极限细度等参数、/span>综上所述,前人对行星球磨机粉碎过程中的最佳参数进行了部分研究,但是较少对某一球磨参数,如球磨时间对粉磨效果的影响机理开展较深入细致的研穵/span>、/span>本文中以常用皃/span>BC干粉灭火剂为原料+/span>以硬脂酸镁为表面处理剁/span>+/span>采用行星球磨机粉磨样?/span>+/span>在一定工艺条件下+/span>研究球磨时间对粉体表观粒径分布及形貌的影哌/span>+/span>确定最优球磨时间及最佳粒徃/span>+/span>为采用机械细化法制备分散性好?/span>疏水性强的超细干粉灭火剂提供参耂/span>、/span>
1实验
1.1立式行星球磨机的工作原理
立式行星球磨机工作系统如国/span>1所礹/span>、/span>该系统通常由水平的转盘咋/span>4个垂直放置的球磨罐组戏/span>+/span>这些球磨罐均匀分布在转盘上+/span>各球磨罐的中心轴线相互平衋/span>、/span>系统包括2种运动系绞/span>9/span>主盘运动系统及行星盘运动系统+/span>其中主盘运动系统以角速度ω2绕主轴匀速转?/span>+/span>行星盘以角速度ω1绕行星轴匀速转?/span>、/span>2种运动系统共同作用使球磨罐进行行星运?/span>[22-23]、/span>球磨罐内的磨球受到惯性力?/span>磨球之间相互作用劚/span>?/span>球磨罐壁的支撑力?/span>惯性力的合力在磨球切线方向上的分力?/span>球磨罐内壁之间的摩擦力及自身重力的作?/span>、/span>
球磨粉碎是机械粉碎最常用的方弎/span>+/span>其基本原理是通过外力作用扩展被破碎颗粒内部原有的微裂纸/span>?/span>位错等晶格缺陶/span>+/span>以达到破碎的目的、/span>在外力作用下+/span>当颗粒所能承受的临界应力小于其内部产生的应力
ω1–/span>行星盘绕行星轴匀速转动的角速度+/span>rad/s:/span>ω2–/span>主盘运动系统绕主轴匀速转动的角速度+/span>rad/s、/span>国/span>1立式行星球磨机工作系绞/span>
旵/span>+/span>颗粒内部发生断裂+/span>达到粉碎的目皃/span>[17]、/span>
1.2实验方法
以市?/span>BC干粉灭火剁/span>'/span>山东能源集团有限公司(/span>为原斘/span>+/span>其主要成分是质量分数丹/span>92%的碳酸氢钟/span>+/span>填料是质量分数为4%的活性白圞/span>?/span>质量分数丹/span>4%的云母粉和防结块添加剁/span>、/span>使用前采用鼓风干燥箱亍/span>50ℂ/span>温度下干?/span>24 h、/span>超细BC干粉粉碎实验?/span>YXQM-4L型行星球磨机上进衋/span>+/span>球磨罐是容积丹/span>1 000 mL的尼龙罐+/span>兰/span>4?/span>+/span>磨罐直径丹/span>103mmmm+/span>高度丹/span>110mm+/span>转?80?分钟(公转)、/span>磨球为玛瑙球+/span>每罐磨球质量丹/span>400 g+/span>磨球直径分别丹/span>6?/span>10?/span>20 mm、/span>球磨机运行方式为止/span>?/span>反交替间歇运衋/span>+/span>即顺时针?/span>30 min–/span>停止30 min–/span>逆时针转30 min–/span>停止30 min+/span>如此循环、/span>为了提高物料的表面活?/span>+/span>缓解糊球及结底现豠/span>+/span>选用硬脂酸镁为表面改性剂+/span>寸/span>BC干粉进行干法表面改性处琅/span>+/span>加入量为BC干粉皃/span>2%'/span>质量分数)、/span>
采用单因素分析法研究球磨时间寸/span>BC干粉灭火剂粉体形貌及粒度分布的影哌/span>、/span>球磨时间为球磨机运行的有效时闳/span>+/span>不包括间歇运行期间的停止时间、/span>球料质量比为4∵/span>1+/span>每只磨罐磨球均由直径丹/span>20?/span>10?/span>6 mm的玛瑙球混合组成+/span>其中直径丹/span>20 mm的磨琂/span>4?/span>+/span>直径丹/span>10 mm的磨琂/span>200?/span>+/span>直径丹/span>6 mm的磨球若幱/span>+/span>球磨时间0.5}/span>4.5 h+/span>增加步长丹/span>0.5 h+/span>兰/span>8练/span>、/span>采用S3500型激光粒度仪测定球磨后样品的粑/span>
度分市/span>+/span>分散剂为无水乙醇、/span>由于超细粉体灭火剂在使用之前将不会采用分散处琅/span>+/span>因此为了接近实际使用情况+/span>直接测定粉体的表观粒徃/span>、/span>采用扫描电镜'/span>SEM(/span>观察不同条件下球磨后粉体样品的形貋/span>、/span>
2结果与讨讹/span>
以市?/span>BC干粉灭火剂为原料+/span>采用立式行星球磨机YXQM系列对其进行粉磨+/span>测定球磨时间对物料形貌及粒径分布的影哌/span>、/span>共进衋/span>8组实骋/span>+/span>分别编号丹/span>MT1–/span>8+/span>对每组实验的出料进行粒径分析及扫描电镜观寞/span>、/span>各实验组别的分析结果如表1所礹/span>、/span>由表可知+/span>在采用长沙米淇仪器设备有限公司生产的行星球磨机对BC干粉灭火剂进行粉磨时+/span>粉体出现不同程度的结底和糊球现象:/span>物料结底和糊球现象越严重+/span>粉磨效率越低+/span>出料量越尐/span>:/span>在球磨过程中粉体基本未出现糊球现豠/span>+/span>但是当球磨时间大亍/span>2 h旵/span>+/span>出现明显的结底现豠/span>+/span>即几乎所有的粉体均沉于罐应/span>、/span>球磨粉体结底?/span>糊球皃/span>3种情况如国/span>2所礹/span>、/span>在粉磨过程中产生糊球?/span>结底的原因有以下几个方面9/span>1(/span>磨球在球磨罐内高速运?/span>+/span>不断地与罐壁和磨球摩?/span>+/span>产生热量+/span>从而致使罐内温度升髗/span>:/span>2(/span>粉磨过程?/span>+/span>大颗粒在磨球及壁面的撞击下表面能不断增大+/span>断裂面的表面电荷增加+/span>不但使颗粒相互粘附和聚集+/span>还会导致糊球?/span>结底现象发生、/span>
?/span>1各实验组别的粉磨结果
Tab. 1 Ball milling results of each experiment
?/span>9/span>+–/span>微量糊球或结应/span>:/span>++–/span>糊球或结底严里/span>:/span>-–/span>不糊球或不结应/span>、/span>
2.1粒径分布的变匕/span>
采用激光粒度仪测定不同球磨时间下粉体的粒径分布+/span>结果如图3所礹/span>、/span>由图可知+/span>行星球磨寸/span>BC干粉灭火剂粉体粒径的影响十分明显、/span>与未球磨的粉体相毓/span>+/span>BC干粉灭火剂的平均粒径明显减小+/span>可见+/span>采用YXQM-4L行星球磨机对BC干粉灭火剂进行机械破碍/span>+/span>其粉磨能力较弹/span>+/span>破碎效率较高、/span>BC干粉灭火剂粉磨前+/span>其粉体的粒径主要分布?/span>50}/span>150 μm+/span>最大粒径和最小粒径分别约丹/span>296.0?/span>1.635 μm、/span>球磨时间丹/span>0.5}/span>4 h旵/span>+/span>粉体的粒径分布主要表现为2种形弎/span>9/span>当球磨时间为0.5}/span>2 h旵/span>+/span>粉体粒径较均匀+/span>粉体粒径分布近似成偏正态分市/span>+/span>分布较窄+/span>累积体积分数丹/span>80%时粉体粒径小亍/span>20 μm+/span>占总体积最多的粉体粒径分别丹/span>7.78?/span>4.62?/span>3.27?/span>2.31 μm+/span>球磨时间分别丹/span>0.5?/span>1?/span>1.5?/span>2 h旵/span>+/span>累积体积分数丹/span>95%时粉体粒径分别小亍/span>30?/span>45?/span>60?/span>60 μm+/span>粉体的最小粒径随着球磨时间的延长略有减導/span>+/span>但是均小亍/span>0.6 μm+/span>最大粒径随着球磨时间的延长而增?/span>+/span>依次丹/span>87.99?/span>148.0?/span>209.3?/span>248.9 μm:/span>当球磨时间为2.5}/span>4 h旵/span>+/span>粉体粒度分布出现2个峰倻/span>+/span>较小的峰值在4 μm附近+/span>较大的峰值在60 μm附近+/span>说明此时粉体粒径不均匀+/span>主要分布?/span>2个区闳/span>、/span>粉体最小粒径小亍/span>0.6 μm+/span>粉体的最大粒径随着球磨时间的延长出现先增大后减小的趋势+/span>当球磨时间为3?/span>3.5 h旵/span>+/span>粉体的最大粒径达?/span>418 μm、/span>累积体积分数丹/span>80%?/span>95%时粉体粒径随着球磨时间的延长而增?/span>、/span>当球磨时间为4 h旵/span>+/span>累积体积分数丹/span>95%的粉体粒径小亍/span>150 μm+/span>接近未粉磨的BC干粉灭火剁/span>、/span>
'/span>a(/span>试样MT1+/span>不糊琂/span>+/span>不结应/span>
国/span>4所示为BC干粉灭火剂粉体表观中位粒径随球磨时间的变化规徊/span>、/span>由图可知+/span>球磨后粉体的中位粒径小于原始BC干粉的粒徃/span>+/span>粉体的表观中位粒径呈现先减小后增大的趋势+/span>球磨时间丹/span>0.5 h旵/span>+/span>粉磨效率较高+/span>粉体表观中位粒径田/span>49 μm减小丹/span>6.8 μm+/span>可见机械球磨可有效减導/span>BC干粉灭火剂粉体表观中位粒徃/span>、/span>当球磨时间为0.5}/span>2 h旵/span>+/span>粉体表观中位粒径与球磨时间呈线性关系减導/span>+/span>关系式为dm=7.405-1.940t+/span>其中dm为粉体表观中位粒徃/span>+/span>μm+/span>t为球磨时闳/span>+/span>h、/span>当球磨时间大亍/span>2 h旵/span>+/span>粉体表观中位粒径随着球磨时间的延长而增?/span>+/span>采用关系弎/span>dm=-19.264+11.856t表示、/span>由此可知+/span>当采用行星球磨机寸/span>BC干粉灭火剂进行机械粉磨时+/span>球磨初期粉磨效率较高、/span>球磨最优时间为2 h、/span>
'/span>b(/span>试样MT5+/span>不糊琂/span>+/span>微量结底'/span>c(/span>试样MT8+/span>不糊琂/span>+/span>严重结底
国/span>2球磨BC干粉灭火剂的结底、糊球情冴/span>
'/span>a(/span>体积分布'/span>b(/span>累积体积分布
国/span>3 BC干粉灭火剂粉体粒径分市/span>
BC干粉灭火剂粉体表观中位粒径随球磨时间的变化规徊/span>
2.2粉体形貌的变匕/span>
上图为球磨前后及不同球磨时间BC干粉灭火剂样品的扫描电镜图像、/span>由图可知+/span>球磨前粉体的分散性优于球磨后皃/span>、/span>
结合粒径分析结果可知+/span>机械球磨粉碎可减小粉体粒徃/span>+/span>但是粉磨后的粉体团聚为较?/span>颗粒+/span>当球磨时间小亍/span>2 h旵/span>+/span>形成较松散的不规则形状的团聚佒/span>+/span>如图5'/span>b(/span>–/span>'/span>e(/span>所礹/span>+/span>结合粒径分析可知+/span>这种团聚体在酒精溶剂中可分散+/span>从而使粉体粑/span>径随着球磨时间的延长而减導/span>、/span>当球磨时间大于等亍/span>2.5 h旵/span>+/span>形成球形的团聚体+/span>如图5'/span>f(/span>–/span>'/span>i(/span>所礹/span>+/span>结合粒径分析结果可知+/span>球磨时间越长+/span>形成的团聚体越紧寅/span>+/span>越不易分敢/span>+/span>此时测定得到的粒径为不易分散的团聚体的整体直徃/span>、/span>
为了进一步观察粉磨前后粉体的形貌+/span>进一步放大粉体的表观形貌+/span>如图6所礹/span>、/span>由图6'/span>a(/span>可知+/span>原始BC干粉灭火剂的粉体为不规则的形犵/span>+/span>采用机械球磨对粉体进行粉碎后+/span>粉体粒径减小+/span>但是其形貌仍为不规则形状、/span>对比国/span>6'/span>b)、(c(/span>可知+/span>球磨可减小粉体的粒径+/span>且粉体粒径随着球磨时间的延长而减導/span>+/span>但是随着粉体粒径的减導/span>+/span>颗粒之间的结合力不断增大+/span>团聚现象加剧、/span>
由上述分析可?/span>+/span>当球磨时间由0.5 h延长?/span>4 h旵/span>+/span>BC干粉灭火剂粉体粒径呈先减小后增大的趋劾/span>、/span>主要原因是行星球磨机超细粉碎是由粗变细的粉碎与团聚的复杂过程+/span>而并非简单的破碎过程[20]+/span>球磨粉碎过程原理如图7所礹/span>、/span>
'/span>a(/span>球磨剌/span>'/span>b(/span>试样MT1'/span>c(/span>试样MT2'/span>d(/span>试样MT3'/span>e(/span>试样MT4
'/span>a(/span>球磨剌/span>'/span>b(/span>试样MT1'/span>c(/span>试样MT5
上图BC干粉灭火剂球磨前、后样品的扫描电镜图僎/span>150μm的颗粒所占的比例随着球磨时间的延长而增?/span>+/span>且粒径较大的颗粒所占的比例不断增大、/span>
由此可推?/span>+/span>球磨时间越长+/span>团聚的粉体颗粒越夙/span>+/span>粉体表观粒径越大、/span>当球磨时间大于最佳球磨时间时+/span>微细颗粒逐渐团聚为较大颗粑/span>、/span>由图3'/span>a(/span>可以看出+/span>当球磨时间大亍/span>2 h旵/span>+/span>粉体最大粒径出现先增大后减小的趋势+/span>由此可知+/span>当粉体团聚到一定粒径后+/span>随着球磨时间的延镾/span>+/span>在机械力的作用下+/span>再次将粉体内部较大颗粒破碍/span>、/span>本文中在测定粉体粒径前未采用超声刅/span>
当球磨时间小于最佳时间时+/span>磨球及磨罐在行星运动时产生较大的机械劚/span>+/span>使粉体粒径减導/span>+/span>比表面积增大+/span>与此同时+/span>在机械力的作用下+/span>也会导致粒径较小的颗粒出现团聙/span>:/span>但是当球磨时间较短时+/span>颗粒较大的粉体较夙/span>+/span>此时粉碎速度大于团聚速度+/span>粉体平均粒径随着球磨时间的延长而减導/span>、/span>当球磨时间较长时+/span>一方面+/span>由于磨球直径?/span>旋转速度的限刵/span>+/span>磨球及磨罐产生的机械力不足以与物料进一步粉碎所需的更大断裂强度抗衠/span>+/span>导致微细颗粒难以继续粉碎得更绅/span>:/span>另一方面+/span>随着粉体中大颗粒不断被破碍/span>+/span>微细颗粒数增夙/span>+/span>在机械力作用下将导致微细颗粒重聚+/span>于是加剧团聚现象+/span>这一现象常被称为‛/span>逆粉碍/span>此时粉体表观平均粒径随着球磨时间的延长而增?/span>、/span>最小的平均粒径称为该球磨工艺下的最优粒徃/span>+/span>最优粒径对应的球磨时间为最佳球磨时闳/span>+/span>球磨后粉体的最小粒径称为该球磨工艺下的极限粒径、/span>由粒径分析结果可推断+/span>实验中球磨工艺的最优粒径为3.82μm+/span>最佳球磨时间为2 h+/span>极限粒径约为0.9}/span>1.2μm+/span>亦即+/span>若在球磨过程中加入适宜分散剁/span>+/span>以防止细微颗粒之间的团聚+/span>避免‛/span>逆粉碍/span>“/span>现象+/span>则采用本文中的球磨工艺可得到粒径约为1μm的粉佒/span>、/span>由图3'/span>a(/span>分析可知+/span>当球磨时间为2.5}/span>4 h旵/span>+/span>粒径分布呈现双峰形状+/span>粒径丹/span>0}/span>10μm的粉体所占的比例随着球磨时间的延长而减導/span>+/span>粒径丹/span>10~散+/span>采用无水乙醇作为溶剂+/span>因此可以推断当球磨时间大于最优球磨时间时+/span>细微颗粒形成的团聚体结合较紧寅/span>+/span>球磨过程中糊球及结底现象严重、/span>
3结论
1?nbsp;采用行星球磨机对BC干粉灭火剂进行粉?/span>+/span>球磨时间小于0.5 h时的粉磨能力最弹/span>+/span>球磨时间丹/span>0.5}/span>2 h旵/span>+/span>粉磨效率略有提高+/span>粉体粒径分布较均匀+/span>体积分数丹/span>80%的粉体粒径小亍/span>20μm+/span>表观中位粒径与球磨时间呈线性减小的趋势:/span>当球磨时间大亍/span>2 h旵/span>+/span>粉磨效率降低+/span>粉体粒径分布?/span>2个区闳/span>+/span>表观中位粒径与球磨时间呈线性增大的趋势、/span>
2?nbsp;当球磨时间为0.5}/span>2 h旵/span>+/span>粉体形貌为较松散的团聚体:/span>当球磨时间为2.5}/span>4 h旵/span>+/span>粉体形貌为较密实的球形团聚体+/span>且形成团聚体的颗粒之间存在较强的结合劚/span>+/span>不易分散、/span>
3?nbsp;当球磨时间大亍/span>2.5 h旵/span>+/span>出现‛/span>逆粉碍/span>“/span>现象+/span>实验中球磨工艺的最优中位表观粒径为3.82μm+/span>最佳球磨时间为2 h+/span>极限粒径约为0.9}/span>1.2μm、/span>若在球磨过程中加入适宜分散剁/span>+/span>以防止细微颗粒之间的团聚+/span>避免‛/span>逆粉碍/span>“/span>现象+/span>则采用本文中的球磨工艺可制备粒径约为1μm的粉佒/span>、/span>
- 卧式聚四氟罐
- 卧式刚玉罏/a>
- 真空内衬不锈钢罐
- 卧式聚氨酯罐—配套罐磨机
- 卧式尼龙罏/a>
- 真空内衬玛瑙罏/a>
- 卧式不锈钢罐
- 米淇 单工位卧式实验滚筒球磨机
- FCM2000型三目倒置金相显微镛/a>