白金会员
已认?/p>
贝士德仪器参与起草制定的第四部国家标准,GB/T 42310-2023 《纳米技 石墨烯粉体比表面积的测定 氩气吸附静态容量法《/strong>,于2023?0?日发布实施、/p>
氩气吸附静态容量法是用氩气(Ar)作为吸附质,在液氩温度下用物理吸附仪测试粉体样品BET吸附比表面积,并采用多点法对检测数据进行分析处理的测量方法。氮气吸附BET法是测试固态物质比表面积的常用方法,用氮气(N2)作为吸附质,当N2在固态吸附剂表面的吸附行为符合理想的经典物理吸附模型时适用。若被测样品对N2分子存在特定吸附,则会造成比表面积测试结果的准确性、可靠性差、/p>
石墨烯是一类典型的二维碳纳米材料,具有优异的电、热和机械性能,在锂离子电池、集成电路?G通信、新型显示等电热应用领域展现出广阔的产业应用前景。石墨烯粉体是我国商业化石墨烯产品的主要类型,由大量“石墨烯纳米片”组成,在锂离子电池电极材料、导电液、导热膜、重防腐涂料等产业领域已实现规模应用。石墨烯粉体的比表面积是影响其应用性能的关键特性参数之一,比表面积的准确可靠测定有利于石墨烯粉体的生产控制,进行应用性能调控?nbsp;
本标准给出了用氩气吸附静态容量法对产业化石墨烯粉体的比表面积进行准确测定的标准化测试分析方法,从很大程度上完善和补充国内现有石墨烯粉体测试方法标准的不足,可用于产业化石墨烯粉体的规格评价和质量控制,为推动石墨烯产业的高质量发展提供了标准技术支撑,具有重要的实用价值、/p>
一、背?nbsp;
对于固态样品比表面积的测定,业内通常依据国家标准GB/T 19587-2017/ISO 9277:2010《气体吸附BET方法测定固态物质比表面积》,但产业领域内根据此标准以N2作为吸附质测定石墨烯粉体的比表面积时,不同检测实验室间无法获得良好一致的检测结果,甚至在同一实验室对同一样品进行检测时,结果重复性也较差。国家标准指导性技术文件GB/Z 38062-2019《纳米技 石墨烯材料比表面积的测试 亚甲基蓝吸附法》是针对石墨烯粉体的比表面积测试而制定的标准测定方法,但此文件中给出的测试样品需在液体中分散制样,试样处理过程复杂,影响因素繁多,从而造成实验过程的可控性及检测结果的重复性、复现性较差。本标准采用氩气吸附静态容量法来测定石墨烯粉体的比表面积,该方法具有简单、快速、准确的特点,能够有效地评估石墨烯粉体的表面性质、/p>
二、制定过?nbsp;
本标准涉及的技术和产业领域广泛,因此集合了国内相关领域的一批权威代表性的科研院所、检测分析平台、石墨烯粉体生产/应用企业、分析仪器厂家等产、学、研、用机构通力合作完成。牵头单位为国家纳米科学中心,共同起草单位有中国计量科学研究院、广州特种承压设备检测研究院、贝士德仪器科技(北京)有限公司、北京石墨烯研究院、青岛华高墨烯科技股份有限公司、冶金工业信息标准研究院、北京低碳清洁能源研究院、浙江师范大学、泰州飞荣达新材料科技有限公司、中国科学院山西煤炭化学研究所。起草工作组历时3年对标准技术内容的可靠性进行了充分的实验验证,深入考察了不同类型石墨烯粉体的均匀性、稳定性,样品预处理方式、准确称重和转移、脱气处理温度和时间、吸附气体选择、测试程序、石墨烯粉体是否含有微孔及如何处理、测试数据选取和分析处理等关键技术点,确保标准的技术内容具备科学性、可操作性和广泛适用性?nbsp;
三、适用范围
本标准适用于具有Ⅱ型(分散的、无孔或大孔)和Ⅳ型(介孔,孔径2 nm?0 nm之间)吸附等温线的石墨烯粉体的比表面积测定。含有少量微孔、吸附等温线呈现出Ⅱ型和Ⅰ型相结合或Ⅳ型和Ⅰ型相结合的石墨烯粉体比表面积测定也适用。本标准描述的方法,其他类型的碳基纳米材料,如碳纳米管、碳纤维、多孔炭等比表面积的测定也可参照使用、/p>
四、主要内?nbsp;
本标准技术内容涵盖氩气吸附静态容量法测定石墨烯粉体比表面积的全流程,针对石墨烯粉体比表面积测定过程中的取样、称重、样品脱气处理温度和时间、测试程序设置以及比表面积计算给出了指引和规定,并在附录中给出了不同气体吸附质、不同类型石墨烯的比表面积测试实例及吸附热研究?nbsp;
术语和定义:包括不同类型石墨烯粉体、比表面积、气体吸附技术核心术语、/p>
一般原理:扼要介绍了氩气吸附静态容量法测量原理:以氩气为吸附质,在液氩温度?7.3 K)下通过静态容量法测量平衡状态下氩气分子的吸附等温线,采用BET多点法进行数据分析,获得石墨烯粉体样品的吸附量与比表面积。本文件应用范围包括Ⅱ型(分散的、无孔或大孔)和Ⅳ型(介孔,孔径2 nm?0 nm之间)吸附等温线以及II型和I型相结合或Ⅳ型和I型相结合的吸附等温线。氩气吸附静态容量法检测示意图(图1)、不同类型的吸附等温线图(图2)附下?nbsp;
取样和称重:取样量应大于样品的最小取样量,并根据仪器说明书综合考虑取样量。取样量宜使总表面积处于10 m2?20 m2范围。表观密度较大的样品可直接取样;表观密度小、易飘洒的样品,宜震实后取样,且选用较大体积的测试样品管。称重时需对精密电子天平进行校准,并注意气体回填、环境温度变化等因素的影响。标准中给出了如何称取不同类型石墨烯粉体的推荐操作?nbsp;
脱气条件和测试程序:测定前,应通过脱气除去样品表面的物理吸附物质,同时要避免表面发生不可逆的变化。脱气温度应低于样品的热分解温度,用热重分析法确定合适脱气温度。脱气时间由样品管内的真空度决定,推荐在脱气温度下样品管内的真空度最终达到≤1 Pa。标准中给出了如何确定脱气温度和时间、详细的测试程序和应满足的要求,以及不同类型测试样品的数据点选取原则和注意事项等、/p>
实验数据处理9/strong>详细给出了基于BET多点物理吸附法计算比表面积的方法和要求,及测试样品分别在含微孔、不含微孔情况时,如何对测试数据进行处理和分析、/p>
检测报告:基于测试过程和测试结果,安全要求给出检测报告并对测试结果进行不确定度分析?nbsp;
测试实例9/strong>附录中详尽给出了具有典型代表性的不同类型石墨烯粉体的测试实例,并展示了用不同吸附质气体(氩气、氮气、氧气、二氧化碳、氪气)顺序进行吸附时,测试样品所表现出的吸附行为差异,实验数据明确表明某些石墨烯粉体测试样品对N2分子存在特定吸附情况。通过研究不同类型石墨烯粉体吸附N2和Ar时的吸附热差异,进一步验证了石墨烯粉体存在对氮气的特异性吸附行为的存在,表明了选择Ar作为吸附质采取氩气吸附静态容量法测定石墨烯粉体比表面积的必要性?nbsp;
五、理论依据浅?nbsp;
在石墨烯粉体测试样品均匀性、稳定性满足测试要求的前提下,用氮气吸附BET法测量石墨烯粉体比表面积的准确性、可靠性较差的原因在于N2存在特定吸附行为:由不同生产厂家、不同生产工艺的产业化石墨烯粉体,通常不可避免的含有片层内缺陷、片径边缘位错、晶界等,从而造成处于特定位点上的碳原子活跃程度存在明显差异。此外不同表面改性生产工艺也会造成石墨烯粉体样品表面功能基团(?OH)的差异。用具有四极矩的N2分子作为吸附质,会与石墨烯粉体中的活跃碳原子或极性吸附基团间形成特定吸附,使得形成不符合理想经典物理吸附模型的分子排列取向,造成多点吸附曲线的线性相关性较差,导致比表面积测试结果的准确性、可靠性也较差、/p>
氩气分子是单原子气体分子,电子已完全配对且不存在任何成键轨道,通常认为其不具有化学活性。氩气分子不存在四极矩,作为吸附质在石墨烯粉体材料表面吸附时,对样品表面结构或官能团的敏感性低,其吸附行为符合理想经典物理吸附模型,所以在液氩温度下进行比表面积测定时,可用经典BET理论进行计算。由于氩气与氮气的极化率和分子尺寸极为相似,他们的非特定吸附性质也极为相似,在非极性吸附剂上,氮的吸附热和氩的吸附热几乎相等。本标准用不同类型、不同表面修饰、不同极性的石墨烯粉体样品进行详细的试验验证,证实了采用Ar作为吸附质测定石墨烯粉体比表面积的科学性和合理性?nbsp;
本文作者: 刘忍 教授级高工;国家纳米科学中心 中科院纳米标准与检测重点实验室 Email: liurx@nanoctr.cn 闫晓 工程师; 国家纳米科学中心 技术发展部 Email:yanxy@nanoctr.cn
来源:仪器信息网
贝士德仪器参与起草制定的第一部国家标凅/strong>
由贝士德仪器参与起草制定的第一部国家标准GB/T 39713-2020 《精细陶瓷—陶瓷粉末比表面积测试方 BET 法》于2020-12-14发布?021-07-01实施、/p>
本标准规定了精细陶瓷粉体比表面积试验方法气体吸附BET法的术语和定义、原理、试验步骤、试验条件、数据处理和试验报告。适用于采用低温氮吸附BET法测试精细陶瓷粉体比表面积,检测范?.01m2/g~2000m2/g
贝士德仪器参与起草制定的第二部国家标凅/strong>
由贝士德仪器参与起草制定的第二部国家标准GB/T 40401-2021《骨架密度的测量 气体体积置换法》于2021-08-20发布?022-03-01实施、/p>
本国家标准GB/T 40401-2021 ,规定了一种通过气体置换法密度仪法快速准确地测定规则或不规则形状的固体材料样品的骨架密度的方法,包括粉末或整体单件样品、/p>
贝士德仪器参与起草制定的第三部国家标凅/strong>
由贝士德仪器参与起草制定的第三部国家标准GB/T 42269-2022《分离膜孔径测试方法气体渗透法?022-12-30发布?023-04-01实施、/p>
本国家标准GB/T 42269-2022 ,描述了采用气体渗透法测定分离膜平均孔径的方法、/p>