看了LCpro T全自动便携式光合仪的用户又看亅/p>
虚拟号将180秒后失效
使用微信扫码拨号
LCpro-T便携式光合仪为新一代智能型便携式光合作用测定仪,用以测量植物叶片的光合速率、蒸腾速率、气孔导度等与植物光合作用相关的参数。仪?/span>应用时间差分IRGA(红外气体分析)CO2分析模块咋/span>双激光调谐快速响应水蒸气传感?/span>精密测量叶片表面CO2浓度及水分的变化情况来考察叶片与植物光合作用相关的参数。通过人工光源?/span>CO2控制单元和温度控制单元可以同时精确调控环境条件,从而测定光强?/span>CO2浓度和温度对植物光合系统的影响。本仪器可在高湿度、多尘等恶劣环境中使用,具有广泛的适用性、/span>
上图左为全套光合仪主机配件及便携箱等,上图中为光合仪主机和手柄,上图右为操作人员进行野外实验
l植物光合生理研究
l植物抗胁迫研穵/span>
l碳源碳汇研究
l植物对全球气候变化的相应及其机理
l作物新品种筛逈/span>
l配备手持式叶绿素荧光仪,内置了所有通用叶绿素荧光分析实验程序,包括两套荧光淬灭分析程序?/span>3套光响应曲线程序?/span>OJIP-test筈/span>
l彩色LCD触摸屏,屏幕和控制单元均采用膜封技术,可在高湿和多尘环境下使用
l白光咋/span>RGB'/span>Red Gree Blue)光源任选其一
l内置GPS模块,精确获取经纬度及海拔数?/span>
l完全自动、独立控制环境参数(空气湿度+/span>CO2浓度,温度,光照强度(/span>
l精确测量CO2和水汽数?/span>
l便携式设计,体积轻小,仅里/span>4.1Kg
l人体工程学设计,舒适型肩带,携带操作简侾/span>
l手柄内置微型IRGA,有效缩?/span>CO2测量时间
l可在恶劣环境下操作,坚固耐用
l可方便互换不同种类的叶室、叶夸/span>
l叶室材料精心选择,确俜/span>CO2及水刅/span>测量精度
l数据存储量大,使用即插即拓/span>SD占/span>
l维护方便,叶室所有区域都很容易清?/span>
l采用低能耗技术,野外单电池持续工作时间长,可辽/span>16小时
l实时图形显示功能
上图为英国剑桥大学植物科学系M. Davey博士在南极洲对藻类光合作用研究时的工作图片,囟/span>LC系列光合仪轻便小巧,坚固耐用,续航持久等特点被列?*、/span>
l测量参数:光合速率、蒸腾速率、胞闳/span>CO2浓度、气孔导度、叶片温度、叶室温度、光合有效辐射、气压?/span>GPS数据等,可进行光响应曲线咋/span>CO2响应曲线测量、/span>
l手持叶绿素荧先/span>仪(选配(/span>
1.测量参数包括F0?/span>Ft?/span>Fm?/span>Fm’?/span>QY_Ln?/span>QY_Dn?/span>NPQ?/span>Qp?/span>Rfd?/span>RAR?/span>Area?/span>M0?/span>Sm?/span>PI?/span>ABS/RC筈/span>50多个叶绿素荧光参数,叉/span>3种给光程序的光响应曲线?/span>2种荧光淬灭曲线?/span>OJIP曲线筈/span>
2.高时间分辨率,可辽/span>10万次每秒,自动绘凹/span>OJIP曲线并给凹/span>26?/span>OJIP-test测量参数包括F0?/span>Fj?/span>Fi?/span>Fm?/span>Fv?/span>Vj?/span>Vi?/span>Fm/F0?/span>Fv/F0?/span>Fv/Fm?/span>M0?/span>Area?/span>Fix Area?/span>Sm?/span>Ss?/span>N?/span>Phi_P0?/span>Psi_0?/span>Phi_E0?/span>Phi-D0?/span>Phi_Pav?/span>PI_Abs?/span>ABS/RC?/span>TR0/RC?/span>ET0/RC?/span>DI0/RC筈/span>
lCO2测量范围9/span>0-3000ppm
lCO2测量分辨率:1ppm
lCO2采用红外分析,差分开路测量系统,自动置零,自动气压和温度补偿
lH2O测量范围9/span>0-75 mbar
lH2O测量分辨率:0.1mbar
lPAR测量范围9/span>0-3000mol m-2s-1,余弦校止/span>
l叶室温度9/span>-5 - 50 精度?#177;0.2ℂ/span>
l叶片温度9/span>-5 - 50
l空气泵流速:100 - 500ml / min
lCO2控制:由内部CO2供应系统提供?*辽/span>2000ppm
lH2O控制:可高于或低于环境条仵/span>
l温度控制:由微型peltier元件控制,环境温?/span>-10℃到+15℃,所有叶室自动调芁/span>
lPAR控制9/span>RGB光源**2400mol m-2s-1+/span>LED白色光源**2500mol m-2s-1
l可选配多种带有光源的可控温叶室、叶夸/span>
1.宽叶叶室:长宽为2.52.5cm,适用于阔叶及大多数叶片类垊/span>
2.窄叶叶室:长宽为5.81cm,适用宽度小于1cm的条形叶
3.针叶叶室:长?/span>69mm,直徃/span>47mm,适用于簇状针叶(白光光源(/span>
4.小型叶叶室:叶室直径丹/span>16.5mm,测量面?/span>2.16cm2
5.土壤呼吸/小型植物宣/span>:测量测量土壤呼吸,或者高度低亍/span>55mm的整株草本植物光合作用,底面直径丹/span>11cm
6.多功能测量室:长?#215;高为15157cm,分为上下两部分,上部测量小型植物光合作用,下部分测量土壤呼吷/span>
7.果实测量室:上下两部分组成,上部透明,下部为金属,可测量果实**直径丹/span>11cm?*高度丹/span>10.5cm
8.冠层测量室:底面直径12.7cm,高12.2cm,适用于地表冠屁/span>
9.荧光仪联用适配器:适用于连接多种叶绿素荧光?/span>
上图从左到右依次为宽叶室、窄叶室?/span>LED光源、荧光仪联用叶室、小型叶宣/span>
上图从左到右依次为针叶室、果实测量室、土壤呼吸室、多功能测量室、冠层室
l显示:彩艱/span>WQVGALCD触摸屏,80 x 272像素,尺寷/span>95 x 53.9 mm,对角线镾/span>109mm
l数据存储9/span>SD卡,**兼容32G容量
l数据输出9/span>Mini-B垊/span>USB接口+/span>RS232九针D型接口,**230400波特玆/span>PC通讯
l供电系统:内?/span>12V 7.5AH锂离子电池,可持续工作至16小时,智能充电器
l尺寸:主朹/span>230110170mm,测量手柃/span>3008075mm
l重量:主朹/span>4.1Kg,测量手柃/span>0.8Kg
l操作环境9/span>5?/span>45ℂ/span>
Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeansZobioleL. et al. 2010Plant and Soil 328(1): 57-69
本研究对不同类型的抗草甘膦大豆进行草甘膦处理,发现大豆的各项光合参数,包括叶绿素含量、气孔导度、光合速率和蒸腾速率都有所降低、/span>
Methanol as a signal triggering isoprenoid emissions and photosynthetic performance inQuercus ilexSecoR. et al. 2011Acta Physiologiae Plantarum 33(6):2413-2422
上图左为本研究设计的气室装置,用以研究常青栎'/span>Quercus ilex)在剪去部分叶片(模拟啃食)和加入甲醇(模拟附近其他植物被啃食时释放的信号)时的生理变化,上图右表明两种处理都提高了植物的净光合速率、/span>
英国
1)与叶绿素荧光仪组成光合作用与叶绿素荧光测量系绞/span>
2)不/span>FluorCam联用组成光合作用与叶绿素荧光成像测量系统
3)可选配高光谱成像实现从单叶片到复合冠层的光合作用时空变化研穵/span>
4)可选配O2测量单元
5)可选配红外热成像单元以分析气孔导度动?/span>
6)可选配PSI智能LED光源
7)可选配FluorPen?/span>SpectraPen?/span>PlantPen等手持式植物(叶片)测量仪器,全面分析植物叶片生理生?/span>
8)可选配ECODRONE?无人机平台搭载高光谱和红外热成像传感器进行时空格局调查研究
1.Al Kharusi L. Assaha D.V.M Al-Yahyai R. and Yaish W.M. (2017). Screening of Date Palm (PhoenixdactyliferaL.) Cultivars for Salinity Tolerance. Forests 2017? 136;doi:10.3390/f8040136.
2.Alsanius B.W. Bergstrand K-J. Hartmann R. Gharaie S. Wohanka W. Dorais M. Rosberg A.K.(2017). Ornamental flowers in new light: Artificial lighting shapes the microbial phyllospherecommunity structure of greenhouse grown sunflowers (Helianthus annuus L.) ScientiaHorticulturae Volume 216 Pages 234‒/span>247.
3.Alvarado-Sanabria,O. Garcs-Varn G. and Restrepo-Daz H. (2017). Physiological Response of Rice Seedlings (Oryza sativa L.) Subjected to Different Periods of Two Night Temperatures. Journal of Stress Physiology & Biochemistry Vol. 13 No. 1 2017 pp. 35-43.ISSN 1997-0838.
4.Barros R.E. Fari R.M. Tuffi Santos L.D. Azevedo A.M. Governici J.L. (2017). Physiological Response of Maize and Weeds in Coexistence. Plants Daninha 2017; v35: e017158134.
6.Borja D. Gonzalez-Gonzalez Nerea Oliveira Isabel Gonzalez Isabel Canellas Hortensia Sixto (2017).Poplar biomass production in short rotation under irrigation: A case study in theMediterranean. Biomass and Bioenergy 107 Dec 2017 198-206.
7.WF Dutra YL Guerra JPC Ramos PD Fernandes 2018. Introgression of wild alleles into the tetraploid peanut crop to improve water use efficiency earliness and yield (2018)- journals.plos.org
8.Can Bradyrhizobium strains inoculation reduce water deficit effects on peanuts? (2018).DD Barbosa SL Brito PD Fernandes World Journal of“/span> 2018?C Springer
9.EG de Sousa TI da Silva TJ Dias DV Ribeiro (2018). Biological Fertilization as an Attenuation of Salinity Water on Beetroot (Beta vulgaris) (2018)- Journal of Agricultural 2018ccsenet.org
10.TC Alves JPAR da Cunha EM Lemes (2018). Physiological changes in sugarcane in function of air and ground application of fungicide for orange rust control. 2018- Bioscience Journalseer.ufu.br
11.FRM Abreu B Dedicova RP Vianello AC Lanna (2018). Overexpression of a phospholipase (OsPLD|?1) for drought tolerance in upland rice (Oryza sativa L.) (2018) Protoplasma 2018?C Springer
12.B Correia RD Hancock J Amaral (2018).Combined drought and heat activates protective responses in Eucalyptus globulus that are not activated when subjected to drought or heat stress alone(2018) Frontiers in plant“/span> 2018frontiersin.org
13.C Ma H Hu L Jia C Zhang F Li (2018).Effects of Brackish Water Salinity on the Soil Salt and Water Movements and the Cotton Seedling Growth Under Film Hole Irrigation. 2018 Sustainable Development of Water“/span>?C Springer
14.P Zou X Lu C Jing Y Yuan Y Lu C Zhang (2018). Low-Molecular-Weightt Polysaccharides From Pyropia yezoensis Enhance Tolerance of Wheat Seedlings (Triticum aestivum L.) to Salt Stress (2018 Frontiers in plant“/span> 2018frontiersin.org
15.MEB Brito LAA Soares WS Soares Filho (2018). Emergence and morphophysiology of Sunki mandarin and other citrus genotypes seedlings under saline stress (2018)- Spanish Journal 2018revistas.inia.es
16.LAA Soares PD Fernandes GS Lima (2018).Gas exchanges and production of coloured cotton irrigated with saline water at different phenological stages (2018)- Revista Ci??ncia“/span> 2018SciELO Brasil
17.X Zhang Y Fan Y Jia N Cui L Zhao (2018).Effect of water deficit on photosynthetic characteristics yield and water use efficiency in Shiranui citrus under drip irrigation (2018- Transactions of the 2018ingentaconnect.com
18.JES Ribeiro AJS Barbosa SF Lopes (2018). Seasonal variation in gas exchange by plants of Erythroxylum simonis Plowman (2018)- Acta Botanica“/span> 2018SciELO Brasil
19.TB de Oliveira L de Azevedo Peixoto PE Teodoro (2018). The number of measurements needed to obtain high reliability for traits related to enzymatic activities and photosynthetic compounds in soybean plants (2018)- PloS one 2018journals.plos.org
20.A Muthalagu SJ Ankegowda MF Peeran (2018).Effect of Natural Growth Enhancer on Growth Physiological and Biochemical Attributes in Black Pepper (Piper nigrum L.) (2018)- researchgate.net
21.W Zhang XX Chen YM Liu DY Liu YF Du (2018). The role of phosphorus supply in maximizing the leaf area photosynthetic rate coordinated to grain yield of summer maize (2018)- Field Crops“/span> 2018?C Elsevier
暂无数据