看了MC1000 8通道藻类培养与在线监测系统的用户又看亅/p>
虚拟号将180秒后失效
使用微信扫码拨号
MC1000 8通道藻类培养与在线监测系统由8?span>100ml藻类培养试管、水浴控温系统?span>LEDs光源控制系统及光密度和溶解氧(选配)在线监测系统等组成,可用于藻类培养与控制实验、梯度对比实验等,适于水体生态毒理学研究检测、藻类生理生态研究、水生态研究等,其主要功能特点如下9/span>
1.8通道藻类培养,每个藻类培养试管可培养85ml藻液
2.LEDs光源,可对每个培养试管独立调节控制和设置光强度和时间,如昼夜变化筈/span>
3.光密度在线监测,包括OD680?/span>OD720,监测数据自动存?/span>
4.溶解氧在线监测(备选)以测量分析藻类光合作用等
5.温度、光照控制可用户设置不同的程序模弎/span>
6.气泡混匀:可通过调节阀手动调节气流量以对培养试管内的藻类进行混匀
7.可选配O2/CO2监测系统,在线监测藻类光合放氧和CO2吸收
8.可选配藻类荧光测量模块
应用领域9/span>
l多通道同步藻类培养
l同步梯度胁迫实验
l培养条件优化
l控制培养条件与藻类生长动力学监测
仪器型号9/span>
MC 1000-OD9/span> 8个通道光源颜色相同+/span>标配冷白先/span>LED
MC 1000-OD-WW9/span>8个通道光源颜色相同+/span>标配暖白先/span>LED
MC 1000-OD-MULTI9/span> 8个通道光源颜色不同,分别为1)紫先/span>405nm+/span>2)蓝紫光450nm+/span>3)蓝先/span>470nm或冷白光+/span>4)暖白光+/span>5)绿先/span>540nm+/span>6)黄橙光590nm+/span>7)红先/span>640nm+/span>8)远红光730nm、/span>
MC 1000-OD-MIX:每个通道可配?夙/span>8种不同颜色的LED光源,光源颜色可由用户定制,可选颜色为1)紫先/span>405nm+/span>2)蓝紫光450nm+/span>3)蓝先/span>470nm或冷白光+/span>4)暖白光+/span>5)绿先/span>540nm+/span>6)黄橙光590nm+/span>7)红先/span>640nm+/span>8)远红光730nm、/span>
技术指标:
1.藻类同步培养通道9/span>8?/span>
2.培养管容量:100ml,建?*培养容量85ml
3.在线即时监测参数:分别监测每个培养管皃/span>OD680咋/span>OD720,数据自动保存到主机内存中,PIN光电二极管检测器+/span>665,/span>750nm带通滤波器
4.精确控温范围:标准配置高于环境温?/span>5-10℃(与光强有关)~60℃,可选配15ℂ/span>-60℃(环境温度20℃,需加配制冷单元(/span>
5.加热系统9/span>150W筒形加热?/span>
6.水浴体积9/span>5L
7.水浴自动补水模块(选配):水浴水位因蒸发降低后可自动补氳/span>
8.光源系统:全LED光源,可?/span>0-100%范围内调控,每个通道的光强可分别独立调控
1MC 1000-OD9/span>标配冷白先/span>LED,可选配暖白光、红光(635nm)或蓝光'/span>470nm(/span>LED;光弹/span>0-1000mol/m2/s可调+/span>可升级至0-2500mol/m2/s
2MC 1000-OD-WW9/span>标配暖白先/span>LED,光弹/span>0-1000mol/m2/s可调,更高光强可定制
3MC 1000-OD-MULTI9/span>8个通道光源颜色不同,分别为紫光405nm,蓝紫光450nm,蓝先/span>470nm或冷白光,暖白光,绿先/span>540nm,黄橙光590nm,红先/span>640nm,远红光730nm:/span>光强0-1000mol/m2/s可调
4MC 1000-OD-MIX:每个通道可配?夙/span>8种不同颜色的LED光源,光源颜色可由用户定制,**光强可达2500mol/m2/s
9.控光模式:可静态或动态设置光照程序,如正弦、昼夜节律、脉冲等
10.控制单元显示屏:可调控培养程序和显示数据
11.气流调控:通过多管调节阀寸/span>8个培养管手动独立调控气体流量
12.OD测量程序:将主机内存中的OD数据下载到电脑中并以图表形式显示,数据可导出丹/span>TXT戕/span>Excel文件
13.MC实时在线监测分析模块(含专用工作站和软件基础版或高级版,选配(/span>
1同时控制2?/span>MC1000(基础版)或无限台MC1000(高级版(/span>
2通过PBR软件动态调控光照和温度模式
3通过光密度(OD680?/span>OD720)变化实时监测藻类生物量
4对生长速率进行实时回归分析
5多数据管理功能(过滤、查找、多重导出)
6可将测量数据、培养程序和其他信息保存到数据库?/span>
7通过GUI图形用户界面设置培养程序并在线显示测量数据图
8数据可导出为CSV?/span>Excel戕/span>XML文件
9支持GMS高精度气体混合系统(仅限高级版)
10用户自编程培养程序(仅限高级版)
11设定实验起始时间(仅限高级版(/span>
12电子邮件通知(仅限高级版(/span>
14.GMS150高精度气体混合系统(选配):可控制气体流速和成分,标配为控制氮气/空气和二氧化碳,气源需用户自备
15.恒浊控制模块(选配):带有8个控制阀,可独立控制8个培养管的浊度,由软件自动控
16.O2/CO2监测系统(选配):8通道续批式监测藻籺/span>CO2吸收或光合放氧通量9/span>
1氧气分析测量:氧气测量范図/span>0,/span>100%,分辨玆/span>0.0001%,精确度优于0.1%,温度、压力补偾/span>+/span>数码过滤(噪音)0-50秒可调,具两行文字数孖/span>LCD背光显示屏,可同时显示氧气含量和气压
2二氧化碳分析测量:双波长非色散红外技术,测量范围0,/span>5%或0,/span>15%两级选择(双程),分辨率优于0.0001%戕/span>1ppm(可辽/span>0.1ppm),精确?/span>1%,通过软件温度补偿,具两行文字数字LCD背光显示屏,可同时显礹/span>CO2含量和气压,具数码过滤(噪音)功胼/span>
3气体抽样与气路切换:具备隔膜泵、气流控制针阀和精密流量计,气路自动定时切换功胼/span>
17.藻类荧光测量模块(选配):用于测量藻类荧光参数以反映藻类生理状态及浓度,荧光测量程序包?/span>Ft+/span>QY+/span>OJIP-test+/span>NPQ、光响应曲线等,可选配探头式测量或试管式测量:
1探头式测量:具备光纤测量探头,可插入培养液中原位测量藻类荧光参数
2试管式测量:具备测量杯,可取样精确测量藻类荧光参数及光密度倻/span>
18.通讯方式9/span>USB
19.尺寸9/span>713321 cm
20.重量9/span>13kg
21.供电9/span>110-240V
应用案例9/span>
不同CO2浓度下衣藺/span>Chlamydomonas的生长曲线(Zhang+/span>2014(/span>
聚球藺/span>Synechococcus野生型和▲/span>nblA的生长曲线(Yu+/span>2015(/span>
产地9/span>捷克
参考文献:
1.YuJet al.2015.Synechococcus elongatusUTEX 2973 a fast growing cyanobacterial chassis for biosynthesis using light and CO2.Scientific Reports 5:8132+/span>DOI: 10.1038/srep08132
2.GramaB Set al.2015.Balancing photosynthesis and respiration increases microalgal biomass productivity during photoheterotrophy on glycerol.ACS Sustainable Chem. Eng.DOI: 10.1021/acssuschemeng.5b01544
3.DavisR Wet al.2015.Growth of mono- and mixed cultures ofNannochloropsis salinaandPhaeodactylum tricornutumon struvite as a nutrient source.Bioresource Technology198 577-585
4.PatzeltD Jet al.2015.Hydrothermal gasification ofAcutodesmus obliquusfor renewable energy production and nutrient recycling of microalgal mass cultures.Journal of Applied Phycology 27(6)+/span>2239-2250
5.PatzeltD Jet al.2015.Microalgal growth and fatty acid productivity on recovered nutrients from hydrothermal gasification ofAcutodesmus obliquus.Algal Research10 164-171
6.FlowersJ Met al.2015.Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green AlgaChlamydomonas reinhardti.The Plant Cell27(9)2353-2369
7.MakowerA Ket al.2015.Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin inMicrocystis aeruginosaPCC 7806.Appl. Environ. Microbiol. 81(2)+/span>544-554
8.VuM T Tet al.2015.Optimization of photosynthesis growth and biochemical composition of the microalgaRhodomonas salina–span>an established diet for live feed copepods in aquaculture.Journal of Applied Phycologydoi:10.1007/s10811-015-0722-2
9.Nikolaou Aet al.2015.A model of chlorophyll fluorescence in microalgae integrating photoproduction photoinhibition and photoregulation. Journal of Biotechnology 19491-99. DOI: 10.1016/j.jbiotec.2014.12.00
10.Gris Bet al.2015.Optimizing biomass and high value compound production inCyanobacterium aponinumPCC 10605.Societa Botanica Italiana. Venezia.
11.GrinSet al.2014.Modeling the dependence of respiration andphotosynthesis upon light acetate carbon dioxide+/span>nitrate and ammonium inChlamydomonasreinhardtiiusing design of experiments andmultiple regression.BMC Systems Biology 896
12.HasanRet al.2014.Bioremediation of Swine Wastewater and Biofuel Potential by usingChlorella vulgarisChlamydomonas reinhardtii andChlamydomonas debaryana.J Pet Environ Biotechnol 5:175. doi: 10.4172/2157-7463.1000175
13.?antr??ekJet al.2014.Stomatal and pavement cell density linked to leaf internal CO2concentration.Annals of Botany 114+/span>191-202
14.Zhang Bet al.2014.Characterization of a Native Algae SpeciesChlamydomonas debaryana: Strain Selection Bioremediation Ability and Lipid Characterization.BioResources9(4) 6130-6140
15.GramaB Set al.2014.Induction of canthaxanthin production in aDactylococcusmicroalgaisolated from the Algerian Sahara.Bioresource Technology151297-305
16.GramaB Set al.2014.Characterization of fatty acid and carotenoid production in anAcutodesmusmicroalga isolated from the Algerian Sahara.Biomass and Bioenergy69 265-275
17.Miazek Ket al.2014.Growth of Chlorella in the presence of organic carbon: A photobioreactor study. ConferenceProcess of Technics 2014Prague
暂无数据