看了FL6000双调制叶绿素荧光测量仪的用户又看亅/p>
虚拟号将 180 秒后失效
使用微信扫码拨号
FL6000双调制叶绿素荧光仪是FL3500双调制叶绿素荧光仪的**升级版,专门用于对蓝绿藻或绿藻等微藻,叶绿体或类囊体悬浮物进行光合作用深入机理研究的强大科研工具。仪器具备双通道测量控制,可控制测量样品的温度,并配备单翻转光(STF),内置多种可用户自行修改的测量程序,可进行目前国际上对于叶绿素荧光的各种深入机理研究。其核心结构是包含了一个悬浮液标准样品杯的光学测量头,内置3练/span>LED光源咋/span>1?/span>500 kHz/16佌/span> AD转换皃/span>PIN二极管信号检测器、/span>AD转换的增益和?/span>分时间可以通过软件控制。检测器测量叶绿素荧光信号的时间分辨率可高达4 s(快速版丹/span>1s)、/span>
应用领域9/span>
植物光合特性和代谢紊乱筛逈/span>
生物和非生物胁迫的检浊/span>
植物抗胁迫能力或者易感性研穵/span>
代谢混乱研究
光合系统工作机理研究
受胁迫植物光合生理应对策略研穵/span>
典型样品9/span>
蓝藻(蓝细菌(/span>
绿藻
叶绿体悬浮物
类囊体悬浮物
植物碎片
功能特点9/span>
内置叶绿素荧光诱导测量?/span>PAM(脉冲调制)测量?/span>OJIP快速荧光动力学测量?/span>QA–再氧化动力学?/span>S状态转捡/span>、叶绿素荧光淬灭等测量程序,是世界上公认的功?为全面的叶绿素荧光仪
双调制技术,可双色调制测量光,具备调制光化学光和持续光化学光,可进行STF(单周转光闪)?/span>TTF(双周转光闪)和MTF(多周转光闪)及定制FRR技术(Fast Repetition Rate)测野/span>
标准版时间分辨率辽/span>4s,快速版更高辽/span>1s,是目前时间分辨?*的叶绿素荧光?/span>
控制单元为双通道,可连接温度传感器用于温度控制、连接氧气测量单元用于希尔反应测量等
具备极高灵敏度,*低检测极限为1g Chla/L
测量光、光化光、饱和单反转光光源颜色、强度均可定刵/span>
主机配备彩色触摸显示屏,可实时查看荧光曲线图
技术参数:
实验程序:叶绿素荧光诱导测量:/span>PAM(脉冲调制)测量:/span>OJIP快速荧光动力学测量:/span>QA–再氧化动力学;S状态转换;快速叶绿素荧光诱导
荧光参数9/span>
PAM荧光淬灭动力学测量:F0+/span>Fm+/span>Fv+/span>F0‘span>+/span>Fm‘span>+/span>Fv‘span>+/span>QY(II)+/span>NPQ+/span>PSII+/span>Fv/Fm+/span>Fv?Fm‘span>+/span>Rfd+/span>qN+/span>qP+/span>ETR筈/span>50多项叶绿素荧光参数与曲线:/span>
OJIP快速荧光动力学测量9/span>OJIP曲线不/span>F0?/span>FJ?/span>Fi?/span>Fm?/span>Fv?/span>VJ?/span>Vi?/span>Fm / F0?/span>Fv / F0?/span>Fv / Fm?/span>M0?/span>Area?/span>Fix Area?/span>SM?/span>SS?/span>N?/span>Phi_P0?/span>Psi_0?/span>Phi_E0?/span>Phi_D0?/span>Phi_Pav?/span>ABS / RC?/span>TR0 / RC?/span>ET0 / RC?/span>DI0 / RC筈/span>20多项相关参数:/span>
QA–再氧化动力学(QA-reoxidation kinetics):测量QA–再氧化动力学曲线,用于拟合QA–再氧化过程中快相(Fast phase)、中间相'/span>Middle phase)和慢相'/span>Slow phase)各自的振幅'/span>A1+/span>A2+/span>A3)和时间常数'/span>T1+/span>T2+/span>T3(/span>
S状态转换(S-state test):S-state test荧光衰减曲线,用于拟合计算无活性光系统II'/span>PSIIX)反应中心数野/span>
提供用户自定么/span>protocol功能,可实现PSII天线异质?/span>PSII不/span>PSII分析?/span>PSII有效天线截面积(s PSII)等参数的测量(仅限快速版(/span>
QA–再氧化动力学曲线和S-state test荧光衰减曲线'/span>Li+/span>2010
时间分辨率(采样频率):高灵敏度检测器,标准版时间分辨率为4s,快速版丹/span>1s
*低检测极限:1g Chla/L
控制单元:配备彩色触摸显示屏,可实时查看荧光曲线国/span>
Superhead测量室:
o 测量光闪9/span>617nm红橙光和455nm蓝光,光闪时闳/span>2‒/span>5s
o 单周转饱和光闪:标准光源丹/span>630nm红光,可选配455nm蓝光?*光强80000 mol(photons)/m2.s,光闪时闳/span>20‒/span>50s
o 持续光化学光:标准光源为630nm红光,可选配455nm蓝光,任选其一?*光强3000 mol(photons)/m2.s
o 样品试管:底面积1010mm,容?/span>4ml
o AD转换器:500 kHz/16‒/span>bit
定制superhead测量室(选配):可分别定制测量光、饱和光闪和光化学光颜色(蓝色、青色、琥珀色等)以及检测波段(ChlA+/span>ChlB(/span>
远红外光源(选配):用于激发光系统I,波镾/span>735nm
氧气测量模块(选配):测量藻类的氧气释攽/span>
温度控制(选配):TR 2000温度调节器,控温范围0‒/span>70℃,精确?/span>0.1ℂ/span>
电磁搅拌(选配(/span>9/span>密封不锈钢外壳,IP64防护等级,手动转扭调逞/span>100-1000rpm+/span>8mm3mm标准磁力棑/span>
通讯接口9/span>USB
FluorWin软件:定义或创建实验方案、光源控制设置、数据输出、分析处理和图表显示
典型应用9/span>
1. 中科院水生生物所王强研究员使?/span>FL3500叶绿素荧光仪'/span>FL6000之前型号)和TL植物热释光系统证明亚硝酸盐胁迫首先影哌/span>Synechocystis sp. PCC 6803 PSII受体?/span>(Zhan X et al 2017)。这种光合作用深入机理的研究经常需要这两种仪器来配合完成、/span>
2.中科院新疆生态与地理研究所潘响亮研究员及其课题组使?/span>FL3500叶绿素荧光仪'/span>FL6000之前型号)深入开展了环境中重金属、盐分、有毒化合物、除草剂、杀虫剂、抗生素等各种有害物质对藻类的毒理研究。通过FL3500独有的高分辨玆/span>OJIP快速荧光动力学测量?/span>QA–再氧化动力学?/span>S状态转换等叶绿素荧光测量程序,全面揭示了不同浓度与处理时间对藻类光合系统造成损伤的毒理机制及其生态影响。目前,潘响亮课题组已经使用FL3500'/span>FL6000之前型号)在国际SCI期刊与国内核心期刊上发表了二十余篇高水平文章
产地9/span>捷克
部分参考文献:
1. Manaa A.+/span>et al. (2019)Salinity tolerance of quinoa (Chenopodium quinoa Willd) as assessed by chloroplast ultrastructure and photosynthetic performance. Environmental and Experimental Botany Volume 162 Pages 103-114
2. Sicora C. I. et al. (2019)Regulation of PSII function in Cyanothece sp. ATCC 51142 during a light–dark cycle. Photosynthesis Research Volume 139 Issue 1? pp 461?73
3. Smythers A. L.+/span>et al. (2019)Characterizing the effect of Poast on Chlorella vulgaris a non-target organism. Chemosphere Volume 219 Pages 704-712
4. Albanese P.+/span>et al. (2018) Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non/span>model organism aided by transcriptomic data integration. The Plant Journal Volume96 Issue4 Pages 786-800
5. Antal T. Konyukhov I. Volgusheva A. et al. (2018) Chlorophyll fluorescence induction and relaxation system for the continuous monitoring of photosynthetic capacity in photobioreactors. Physiol Plantarum. DOI: 10.1111/ppl.12693
6. Antal T. K. Maslakov A. Yakovleva O. V. et al. (2018). Simulation of chlorophyll fluorescence rise and decay kinetics and P700-related absorbance changes by using a rule-based kinetic Monte-Carlo method. Photosynthesis Research. DOI:10.1007/s11120-018-0564-2
7. Biswas S. Eaton-Rye J. J. (2018). PsbY is required for prevention of photodamage to photosystem II in a PsbM-lacking mutant of Synechocystis sp. PCC 6803. Photosynthetica 56(1) 200?09.
8. Bonisteel E. M.+/span> et al. (2018).Strain specific differences in rates of Photosystem II repair in picocyanobacteria correlate to differences in FtsH protein levels and isoform expression patterns. PLoS ONE 13(12): e0209115.
9. Fang X. et al. (2018).Transcriptomic responses of the marine cyanobacterium Prochlorococcus to viral lysis products. Environmental Microbiology doi: 10.1101/394122.
10. Kuthanov Trskov E. Belgio E. Yeates A. M.+/span> et al. (2018) Antenna proton sensitivity determines photosynthetic light harvesting strategy Journal of Experimental Botany Volume 69 Issue 18 14 August 2018 Pages 4483?493
暂无数据