看了MSP3土壤OM-EC-pH勘查测绘系统的用户又看了
虚拟号将180秒后失效
使用微信扫码拨号
前言
无论是土壤研究调查、土地利用规划还是农业生产,了解区域土壤的理化特性背景至关重要,如土壤的持水力、有机物含量、生产潜力?/span>PH值等,传统的野外采样实验室分析法费时费力,即使花费大量人力物力加大抽样强度,也很难客观精确反映区域土壤理化特性的时空变异情况;而且,尽管正常情况下实验室分析比较精确,但由于不是原位测量,从野外样品采集到实验室分析会产生一些列的误差或错误。如何快速对原野土壤理化特性进行普查测绘,在很多情况下成为一个难以逾越的瓶颈。车载式MSP3土壤OM-EC-pH勘查测绘系统可以快速、高密度、原位测绘区域土壤有机质'/span>SOM戕/span>OM)、土壤电导及土壤pH值,使区域土壤快速精准调查研究、碳汇农业及精准农业研究示范成为现实、/span>
MSP3土壤OM-PH-EC勘查测绘系统田/span>VIS-NIR双波段光谱传感器、土壤电导传感器及土壣/span>pH传感器集成于车载式传感器平台MSP'/span>Mobile Sensor Platform)上,通过实地原位测量土壤电导EC?/span>pH值及OM值,并通过GPS定位和数据处理测绘软件,绘制出土壤理化性质分布图,全面分析反映土壤质地、盐碱度?/span>PH值、持水能力、阳离子交换能力、根系深度等。可用于精准农业、土壤调查和碳汇农业(土壤碳储量估算)的研究示范及土地管理和土地利用规划等领域、/span>
主要特点
1.标准配置可同时测绘土壣/span>OM值、浅层土壤和深层土壤双层电导测绘
2.可根据需要选配pH测绘模块
3.原野现场测绘:随着机载系统在原野前行,即时获取电导及地理坐标(经纬度),每公顷可以测量120-240个样点数?/span>
4.直接接触法测野/span>EC,测量基本不受周边电磁影响,也不需要校准、/span>EC与土壤质地(soil texture)有关,土壤质地反映土壤粒径分布(沙土、粘土和粉土)、/span>
5.土壤EC测绘可以快速显示土壤三维理化性质:表层土壤质?/span>X?/span>Y向变化较大,但在Z向(深度)变化不大的情况下,两个深度皃/span>EC图主要反映的是土壤质地空间变化。在土壤剖面'/span>Z向)质地变化较大的情况下,两个深度的EC图有较大差异,分别反映了表层土和深层土的情况
6.VIS-NIR双波段光谱传感器,可经由Veris数据处理中心进行数据处理提供土壤有机?/span>OM倻/span>
7.VIS-NIR双波段光谱传感器?/span>EC?/span>PH传感器及数采等安装在专门设计皃/span>MSP装载架上,可由轻型机动车辆带动,快速对区域内土壤理化性质勘测绘图、/span>
上图左为中科院南皮生态农业试验站,图右为VERIS 3100车载式土壤电导率测量系统在该实验站样地内作业
1.OpticMapper双波殴/span>VIS-NIR传感器,原位测绘植物枯落物下层土壤表层光谱反尃/span>
2.可见光波长:660nm;近红外波长9/span>940nm;光源:LED
3.光谱检测器9/span>5.76mm光敏二极箠/span>
4.PH电极:离子选择性电极与锑测量相结合
5.除通过双波殴/span>VIS-NIR光谱传感器高密度原位测绘分析土壤OM值及其分布图外,可一次同时测量绘刵/span>EC咋/span>PH值,并可实时记录显示测量数据和分布图
6.Garmin 19X GPS
7.电子器件9/span>NMEA 4X密封?*级防水接叢/span>
8.数采9/span>80 pin PIC微处理器+/span>1Hz采集率,SD存储卡,背光显示器,电源10-15DC
9.测绘软件SoilViewer:即时显礹/span>PH值?/span>EC值及光谱反射,并将地理位置信息(经纬度)及测量值下载到计算机上并自动制作二维分布图(光谱反射需经由Veris数据处理中心进行处理分析形成SOM值)
10.PH值采样深?/span>6-12cm可调,每公顷采样5-15个点(与运行速度有关(/span>
11.双层EC测绘,可形成0,/span>45cm的表层土壤电导测绘图和深度为0-91cm土壤剖面电导测绘国/span>
12.OM测量深度9/span>38,/span>76mm
13.拖挂型(适于小型拖拉机)尺寸:宽229cm,长396cm,高152cm,重635kg
14.运载车辆*小马力:30hp(因地形、速度和土壤质地不同而有所变化(/span>
15.轮胎型号9/span>P20 R75公路轮胎
16.测量速度:可辽/span>20km/hr
17.工作温度9/span>-20,/span>70C
下图为美国堪萨斯州立大学G.F. Sassenrath等人'/span>2017年)在其农业实验站利?/span>VERIS 3100车载式土壤电导率测量系统所做的研究、/span>A图为电导率分布,B图为玉米产量,从图中很容易看凹/span>A图绿色低电导率区域与B图绿色高产量区域相关性,从而为作物的灌溉、播种、施肥等综合管理决策提供精准数据、/span>
美国
1)可选配高光谱成像以评估土壤微生物呼吸作?/span>
2)可选配红外热成像研究土壤水分、温度变化对呼吸影响
3)可选配ECODRONE?无人机平台搭载高光谱和红外热成像传感器进行时 格局调查研究
1.Hudzari R. M. & Aimrun W. Application of geographical information system for farm mechanization education and training. Scientific Journal of Pure and Applied Sciences 8 (2013).
2.Combining Site Specific Data with Geospatial Analysis to Identify Variable Rate Irrigation Opportunities in Irrigated Agricultural Fields. in 2014 ASABE Annual International Meeting 1‒/span>18 (American Society of Agricultural and Biological Engineers 2014). doi:10.13031/aim.20141896808
3.Nagy V. et al. Continuous field soil moisture content mapping by means of apparent electrical conductivity (ECa) measurement. Journal of Hydrology and Hydromechanics 61 305‒/span>312 (2013).
4.Kitchen N. R. Sudduth K. A. Myers D. B. Drummond S. T. & Hong S. Y. Delineating productivity zones on claypan soil fields using apparent soil electrical conductivity. Computers and Electronics in Agriculture 46 285‒/span>308 (2005).
5.Misopolinos L. et al. Development of a UAV system for VNIR-TIR acquisitions in precision agriculture. in (eds. Hadjimitsis D. G. Themistocleous K. Michaelides S. & Papadavid G.) 95351H (2015). doi:10.1117/12.2192660
6.Steponavicius D. Kemzuraite A. Zinkevicius R. & Bartkus T. EFFECT OF SOIL PH ON REASONABLE TRAVEL SPEED OF MOBILE UNIT AND LIME APPLICATION. ENGINEERING FOR RURAL DEVELOPMENT 8
7.Franzen D. et al. Evaluation of methods to determine residual soil nitrate zones across the northern Great Plains of the USA. Precision Agriculture 12 594‒/span>606 (2011).
8.Sassenrath G. & Kulesza S. Measuring Soil Electrical Conductivity to Delineate Zones of Variability in Production Fields. Kansas Agricultural Experiment Station Research Reports 3 (2017).
9.SassenrathKulesza - 2017 - Measuring Soil Electrical Conductivity to Delineat.pdf.
10.Chan C. S. Amin M. S. M. Lee T. S. & Mohammud C. H. PREDICTING PADDY SOIL PRODUCTIVITY. 67 11 (2006).
11.Romaneckas K. Zinkevicius R. Steponavicius D. Maziliauskas A. & Marcinkeviciene A. PRINCIPLES OF PRECISION AGRICULTURE IN ON-FARM SPRING WHEAT FERTILIZATION EXPERIMENT. ENGINEERING FOR RURAL DEVELOPMENT 6
12.Schirrmann M. Gebbers R. Kramer E. & Seidel J. Soil pH Mapping with an On-The-Go Sensor. Sensors 11 573‒/span>598 (2011).
13.R. L. Raper D. W. Reeves J. N. Shaw E. van Santen & P. L. Mask. USING SITE-SPECIFIC SUBSOILING TO MINIMIZE DRAFT AND OPTIMIZE CORN YIELDS. Transactions of the ASAE 48 2047‒/span>2052 (2005).
暂无数据