虚拟号将 180 秒后失效
使用微信扫码拨号
台式三维原子层沉积系绞span>ALD
原子层沉?/span>(Atomic layer deposition ALD)是通过将气相前驱体脉冲交替的通入反应器,化学吸附在沉积衬底上并反应形成沉积膜的一种方法,是一种可以将物质以单原子膜形式逐层的镀在衬底表面的方法。因此,它是一种真正的纳米技术,以精确控制方式实现纳米级的超薄薄膜沉积。由于ALD利用的是饱和化学吸附的特性,因此可以确保对大面积、多空、管状、粉末或其他复杂形状基体的高保形的均匀沉积、/span>
美国ARRADIANCE公司的GEMStar XT系列台式 ALD系统,在小巧的机身(78 x56 x28 cm)中集成了原子层沉积所需的所有功能,?多容??英寸基片同时沉积。GEMStar XT全系配备热壁,结合前驱体瓶加热,管路加热,横向喷头等设计 使温度均匀性高?9.9%,气流对温度影响减少?.03%以下。高温度稳定度的设计不仅实现 8英寸基体上膜厚的不均匀性小?%,而且更适合对超高长径比的孔径结构等3D结构实现均匀薄膜覆盖,可实现对高?500?长径比微纳深孔内部的均匀沉积、/span> |
GEMStar XT 产品特点9/strong> 300 铝合金热壁,对流式温度控刵span> 175 温控150ml前驱体瓶+span>200 控输运支箠span> 可容纳多牆span>4+span>6+span>8英寸样品同时沉积 可容纲span>1.25英寸/32mm厚度的基佒span> 标准CF-40接口 可安装原位测量或粉末沉积模块等选件 等离子体辅助ALD插件 多种配件可供选择 | GEMStar XT 产品型号9/strong> GEMStar -4 XT9/span> **4英寸/100 mm基片沉积 单路前驱体输运支管, 4路前驱体瓶接叢span> 不可升级为等离子体增弹span>ALD GEMStar -6/8 XT9/span> **6英寸(150mm)/8英寸(200mm)基片沉积 双路前驱体输运支管, 8路前驱体瓶和CF-40接口 可升级为等离子体增强ALD |
GEMStar -8 XT-P9/span> **8英寸/200mm基片沉积 双路前驱体输运支管, 8路前驱体瓶和CF-40接口 装备高性能ICP等离子发生器 13.56 MHz 的等离子源非帷/span>紧凑,只需风冷?*运行功率辽span>300W、/span> 标配3组气流质量控制计(MFC)控制的等离子气源线,和一杠span>MFC控制的运载气体线,使难以沉积的氧化物、氮化物、金属也可以实现均匀沉积、/span> | |
GEMStar NanoCUBE9/span> * **100 mm 立方体样 沉积 * 单路前驱体输运支管, 2路前驱体瓶接叢/span> * 主要用于3D多孔材料,以及厚样品的沉?/span> |
丰富配件9/strong>
多样品托盘: * 多样品夹具,样品尺寸?" 6" 4")向下兼容、/span> * 多基片夹具,*多同时容?片基片、/span> | 温控热托盘: * 可加热样品托盘,**温度500℃,可实现热?热壁复合加热方式、/span> | ||
粉末沉积盘: | 臭氧发生器: | ||
真空进样器(Load Lock(/strong> | 晶振测厚?/strong> | ||
前驱体瓶9/strong> | 前驱体加热套9/strong> | ||
粉末旋转沉积罐模块: 配合热壁加热方式,进一步实现对微纳粉末样品全保型薄膜均匀沉积包覆、/span> | |||
手套箱接口: 可从侧面或背?*接入手套箱,与从底部接入手套箱不同,不占用手套箱空间。由于主机在手套箱侧面,反应过程中不对手套箱有加热效应,不影响手套箱内温度 | |||
应用案例
应用领域
国内外用戶/span>
已发表文?/span>
1?/span>Lo?cAssaud et al. Systematic increase of electrocatalytic turnover over nanoporousPt surfaces Prepared by atomic layer deposition. J. Mater. Chem. A (2015) DOI: 10.1039/c5ta00205b
2?/span>XiangyiLuo et al. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery. Nanotechnology(2015) 26 164003. DOI:10.1088/0957-4484/26/16/164003
3?/span>HengweiWang et al. Precisely-controlled synthesis of Au@Pd core–shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol. Journal of Catalysis (2015) 324 59‒/span>68. DOI: 10.1016/j.jcat.2015.01.019
4?/span> Sean W. Smith et al. Improved oxidation resistance of organic/inorganic composite atomic layer deposition coated cellulose nanocrystal aerogels. J. Vac. Sci. Technol. A (2014) 4 32 DOI: 10.1116/1.4882239
5?/span>Fatemeh Sadat MinayeHashemi et al. A New Resist for Area Selective Atomic and Molecular Layer Deposition on Metal?Dielectric Patterns. J. Phys. Chem. C (2014) 118 10957?10962. DOI: 10.1021/jp502669f
6?/span>Jeffrey B. Chou et.al Enabling Ideal Selective Solar Absorption with 2D Metallic Dielectric Photonic Crystals. Adv. Mater. (2014) DOI: 10.1002/adma.201403302.
7?/span> Jin Xie et al. Site-Selective Deposition of Twinned Platinum Nanoparticles on TiSi2 Nanonets by Atomic Layer Deposition and Their Oxygen Reduction Activities. ACS Nano (2013) 7 6337‒/span>6345. DOI: 10.1021/nn402385f
8?/span>Pengcheng Dai et al. Solar Hydrogen Generation by Silicon Nanowires Modified with Platinum Nanoparticle Catalysts by Atomic Layer Deposition. Angew. Chem. Int. Ed. (2013) 52 1 ‒/span>6. DOI: 10.1002/anie.201303813
9?/span>Joseph Larkin et al. Slow DNA Transport through Nanoporesin Hafnium Oxide Membranes. ACS Nano(2013) 11 10121‒/span>10128. DOI: 10.1021/nn404326f
10?/span>Thomas M et al. Extended lifetime MCP-PMTs: Characterization and lifetime measurements of ALD coated microchannel plates in a sealed photomultiplier tube Nuclear Instruments and Methods in Physics Research A (2013) 732 388‒/span>391. DOI: 10.1016/j.nima.2013.07.023
11?/span>Kevin J. Maloney et al. Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery. APL Mater. 1 022106 (2013) DOI: 10.1063/1.4818168
12?/span> Sean W. Smith et al. Improved Temperature Stability of Atomic Layer Deposition Coated Cellulose Nanocrystal Aerogels. Mater. Res. Soc. Symp. Proc. (2012) DOI: 10.1557/opl.2012.
暂无数据