看了无液氦低温强磁场扫描探针显微镜的用户又看亅/p>
虚拟号将 180 秒后失效
使用微信扫码拨号
德国Attocube Systems AG公司成立?002年,作为纳米科学领域年轻的仪器供应商,Attocube Systems AG以其掌握的纳米精度定?*成果和强大的技术实力,在短短的几年中研制开发了低震动无液氦磁体与恒温器、多种低温磁场下工作的扫描探针显微镜、极端环境应用纳米精度位移器、皮米精度位移激光干涉器等系列产品,深受用户赞誉。自成立以来,Attocube Systems AG已经获得了许多荣誉,包括Finalist for the 27th Innovation Award of the German Ecomomy 2007 ****00 Innovation Award 2013 等、/span>
无液氦低温强磁场扫描探针显微镛/span>
德国attocube公司推出的attoDRY Lab系列无液氦低温强磁场扫描探针显微镜系统基于attoDRY系列无液氦强磁场超低震动恒温器和多种扫描探针显微镜插件,特别适应于低温光学实验、扫描探针显微镜等应用,产品优异的稳定性为超高分辨率的表面表征研究奠定了坚实的基础。不止于此,产品?早集成了简单易用的触摸屏控制系统以方便自由控制温度大小与磁场强度的商业化恒温器、span>扫描探针显微镜插件包括:attoAFM/MFM/cAFM/PRFM原子力、磁力、导电力、压电力显微镜;attoCFM共聚焦显微镜;Raman与光致发光谱;atto3DR双轴旋转平台等、/strong> |
参数与技术特点:
+ 无液氦,闭路可循环系绞/span>
+ 独特设计,超低震动(0.12 nm RMS(/span>
+ 温度范围?.5 K...300 K 4 K...300 K
+ 磁场强度?*可达15T
+ 多功能测量平台:AFM/MFM/ct-AFM/PRFM/CFM/RAMAN
+ 超高温度稳定?/span>
+ 全自动控制,触摸屏控
+ 快速冷却:1-2小时样品冷却
相关阅读9/strong>
1?a>无液氦低温强磁场共聚焦显微镜 - attoCFM
2、低温强磁场原子?磁力/扫描霍尔显微 - attoAFM/attoMFM/attoSHPM
3?a>磁共振显微镜/低温强磁场磁共振显微 - attoCSFM
4?a>低震动无液氦磁体与恒温器 - attoDRY系列
部分发表文献9/strong>
2. Chaoyang Lu et.al Towards optimal single-photon sources from polarized microcavities. Nature Photonics 13 770?75 (2019)
3. Yuanbo Zhang et. Al “Signatures of tunable superconductivity in a trilayer graphene moir superlattice”Nature 572 215-219 (2019)
4. P. Maletinsky et. Al Probing magnetism in 2D materials at the nanoscale with single-spin microscopy Science 364 973 (2019)
5. Haomin WANG et al “Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment?Nature communications 10 2815 (2019)
6. Mingyuan Huang et.al Magnetic Order-Induced Polarization Anomaly of Raman Scattering in 2D Magnet CrI3 Nano Letters 2020?0? 729-734
7. Alexander H?gele et. al Cavity-control of interlayer excitons in van der Waals heterostructures Nature communications 2019?0:3697.
8. Hanxuan Lin et al. Unexpected Intermediate State Photoinduced in the Metal-Insulator Transition of Submicrometer Phase-Separated Manganites. Phys. Rev. Lett. 120 267202(2018)
9. Chaoyang Lu et.al High-efficiency multiphoton boson sampling. Nature Photonics 11 361-365 (2017)
10. K. Yasuda et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science 2017 358 1311-1314
11. Zhu Y. et al. Chemical ordering suppresses large-scale electronic phase separation in doped manganites. Nature communications 2016?:11260.
12. Yang W.;et al. Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2. Nano Letters 2016 16 1560-1567.
13. Surajit Saha; et al. Long-range magnetic coupling across a polar insulating layer Nature communications 2016?:11015.
14. He Y. M.; et al. Single quantum emitters in monolayer semiconductors.Nature Nanotechnology 2015 10 497-502.
16. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nature Nanotechnology 2015?0?20-124.
17. Nanoscale nuclear magnetic imaging with chemical contrast. Nature Nanotechnology 2015 10 125-128.
18. Observation of biexcitons in monolayer WSe2. Nature Physics 2015 11 477-481.
19. Visualization of a ferromagnetic metallic edge state in manganite strips. Nature Communications 2015 6:6179.
20. Observation of Excitonic Fine Structure in a 2D Transition-Metal Dichalcogenide Semiconductor. ACS Nano 2015 9 647-655.
21. Energy losses of nanomechanical resonators induced by atomic force microscopy-controlled mechanical impedance mismatching. Nature Communications 2014 5:3345.
22. Deterministic and electrically tunable bright single-photon source. Nature Communications 2014 5:3240.
23. Dynamic Visualization of Nanoscale Vortex Orbits. ACS Nano 2014 8 2782-2787.
24. Transition from slow Abrikosov to fast moving Josephson vortices in iron pnictide superconductors. Nature Materials 2013 12 134-138.
25. Stray-field imaging of magnetic vortices with a single diamond spin. Nature Communications 2013 4:2279.
26. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nature Nanotechnology 2013 8 569-574.
27. Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy. Physical Review B 2013 88 165407.
28. Origin of negative magnetoresistance of GaAs/(Ga,Mn)As core-shell nanowires. Physical Review B 2013 87 245303.
29. Magnetic Imaging on the Nanometer Scale Using Low-Temperature Scanning Probe Techniques. Microscopy Today 2011 19 34-38.
30. Visualization of charge transport through Landau levels in graphene. Nature Physics 2010 6 870-874.
部分用户列表
attocube公司产品以其稳定的性能、极高的精度和良好的用户体验得到了国内外众多科学家的认可和肯定。attocube公司的产品在国内也得到了低温、超导、真空等研究领域**科学家和研究组的欢迎......
北京大学 | 清华大学 |
中国科技大学 | 南京大学 |
中科院物理所 | 中科院半导体所 |
中科院武汉数学物理所 | 上海同步辐射中心 |
中科院上海应用技术物理研究所 | 北京理工大学 |
复旦大学 | 哈尔滨工业大?/span> |
中国科学院苏州纳米技术与纳米仿生研究所…?/span> |
暂无数据