虚拟号将 180 秒后失效
使用微信扫码拨号
德国SciDre公司推出的高温高压光学浮区法单晶炉能够提?200?000℃以上的生长温度,晶体生长腔压力可达300bar,甚?0-5mbar的高真空。适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等、/span> 应用领域 适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等、/span> |
耐高温、耐高压、高真空?/span> 高透光率、拆装简便的样品腓/span> | 由德国弗劳恩霍夫应用先/span> 和精密工程研究所优化设计的高反射率镜面, 镜体位置可由高精度步进马达控制调芁/span> |
光阑式光强控制器 更方便地调节熔区温度,延长灯泡寿 | 仿真化触屏控制软仵/span> 界面友好,操作简協/span> |
熔区测温选件**测温技?/span> 可实时监测加热区温度 | 多路独立气路控制选件 可控制N2、O2、Ar、空气等的流量和压力 并可对气体进行比例混合与熔区进行反应 |
气体除杂选件 可使高压氩气中的氧含量达?0-12ppm | 退火选件 可对离开熔区的单晶棒提供 高达1100℃退火温度和高压氧环墂/span> |
SciDre单晶炉特炸/span>
采用垂直式光路设讠/span>
采用高照度短弧氙灯,多种功率规格可逈/span>
熔区温度93000ℂ/span>
熔区压力?0bar/50bar/100bar/150bar/300bar等多种规格可逈/span>
氧气/氩气/氮气/空气/混合气等多种气路可逈/span>
采用光栅控制技术,加热功率?-100% 连续可调
样品腔可实现低至10-5mbar真空环境
丰富的可升级选件
SciDre单晶炉技术参?/span>
熔区温度:高?000 - 3000℃以三/span>
熔区压力:高?0?0?00?50?00 bar可逈/span>
熔区真空?*10-2 mbar 1*10-5 mbar可逈/span>
熔区气氛:Ar、O2、N2等可逈/span>
气体流量?.25 1 L/min流量可控
氙灯功率?kW?5kW可逈/span>
料棒台尺寸:6.8mm?.8mm可逈/span>
拉伸速率?.1-50mm/h
调节速率?.6 mm/s
拉伸尺寸?30mm?50mm?95mm可逈/span>
旋转速率?-70rpm
用电功率?00V三相 63A 50Hz
主机尺寸?30cm*163cm*92cm (不同规格略有差异)
发表文章
1. (2020)Single crystal growth and luminescent properties of YSH:Eu scintillator by optical floating zone method Chemical Physics Letters Volume 738 136916
2. (2020)Anisotropic character of the metal-to-metal transition in Pr4Ni3O10 Phys. Rev. B 101 104104
3. (2020)Synthesis of a New Ruthenate Ba26Ru12O57 Crystals 2020 10(5) 355
4. (2020)Synthesis and characterization of bulk Nd1- SrxNiO2 and Nd1- xSrxNiO3 Phys. Rev. Materials 4 084409
5. (2020)Magnetic phase diagram and magnetoelastic coupling of NiTiO3 Phys. Rev. B 101 195122
6. (2019)High pO2 Floating Zone Crystal Growth of the Perovskite Nickelate PrNiO3 Crystals 2019 9(7) 324
7. (2019)Magnetic properties of high-pressure optical floating-zone grown LaNiO3 single crystals Journal of Crystal Growth Volume 524 15 October 2019 125157
8. (2019)Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr Ce) Phys. Rev. Materials 3 024204
9. (2019)Pushing boundaries: High pressure supercritical optical floating zone materials discovery Journal of Solid State Chemistry 270 (2019): 705-709
10. (2018). Antiferromagnetic correlations in the metallic strongly correlated transition metal oxide LaNiO3. Nature Communications 9:43
11. (2017). Single-crystal growth and physical properties of 50% electron-doped rhodate Sr 1.5 La 0.5 RhO 4 Physical Review Materials 1(4) 044005
12. (2017). Single crystal growth and structural evolution across the 1st order valence transition in (Pr1-yYy) 1- xCaxCoO3-Journal of Solid State Chemistry 254 69-74
13. (2017). Large orbital polarization in a metallic square-planar nickelate. Nature Physics 13 864?69
14. (2017). High-Pressure Floating-Zone Growth of Perovskite Nickelate LaNiO3 Single Crystals. Crystal Growth & Design 17(5) 2730-2735.
15. (2017). High-pressure optical floating-zone growth of Li(Mn,Fe)PO4 single crystals. Journal of Crystal Growth 462 50-59.
16. (2016). Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate. Nature 540 559?62.
17. (2016). Stacked charge stripes in quasi-2D trilayer nickelate La4Ni3O8. PNAS 2016 113 (32) 8945-8950.
18. (2016). Single Crystal Growth of Pure Co3+ Oxidation State Material LaSrCoO4. Crystals 6(8) 98.
19. (2015). Floating zone growth of Ba-substituted ruthenate Sr2?xBaxRuO4. Journal of Crystal Growth 427 94-98.
20. (2015). High pressure floating zone growth and structural properties of ferrimagnetic quantum paraelectric BaFe12O19. APL Materials 3 062512.
21. (2015). Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds. Journal of Physics D: Applied Physics 48(16) 164016.
22. (2014). Brownmillerite Ca2Co2O5: Synthesis Stability and Re-entrant Single Crystal to Single Crystal Structural Transitions. Chemistry of Materials 26(24) 7172-7182.
23. (2014). Low-temperature properties of single-crystal CrB2. Physical Review B 90(6) 064414.(Also on archiv.org.)
24. (2014). Effect of annealing on spinodally decomposed Co2CrAl grown via floating zone technique. Journal of Crystal Growth 401 617-621.(Also on arxiv.org.)
25. (2013). de Haas–van Alphen effect and Fermi surface properties of single-crystal CrB2. Physical Review B 88(15) 155138. (Also on arxiv.org.)
26. (2013). Phase Dynamics and Growth of Co2Cr1–xFexAl Heusler Compounds: A Key to Understand Their Anomalous Physical Properties. Crystal Growth & Design 13(9) 3925-3934.
27. (2011). Exploring the details of the martensite–austenite phase transition of the shape memory Heusler compound Mn2NiGa by hard x-ray photoelectron spectroscopy magnetic and transport measurements. Applied Physics Letters 98(25) 252501.
28. (2011). Challenges in the crystal growth of Li2CuO2 and LiMnPO4. Journal of Crystal Growth 318(1) 995-999.
29. (2011). Self-flux growth of large EuCu 2 Si 2 single crystals. Journal of Crystal Growth 318(1) 1043-1047.
30. (2010). Influence of heat distribution and zone shape in the floating zone growth of selected oxide compounds. Journal of materials science 45(8) 2223-2227.
31. (2009). Highly ordered half-metallic Co2FeSi single crystals. Applied Physics Letters 95(16) 161903.
32. (2009). Single-crystal growth of LiMnPO4 by the floating-zone method. Journal of Crystal Growth 311(5) 1273-1277(Also on uni-heidelberg.de.)
33. (2008). Crystal growth of rare earth-transition metal borocarbides and silicides. Journal of Crystal Growth 310(7) 2268-2276.
用户单位
中国科学院物理研究所
中国科学院固体物理研究所
北京师范大学
中山大学
南昌大学
上海大学
暂无数据