证:工商信息已核宝br /> 访问量:195654
其他
植物生理生态仪?/a>
光学仪器及设夆/a>
水质分析
光谱检测分析仪
HPV 茎流量传感器/Sap Flow Sensor
HPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用热脉冲速率泔/span>'/span>HPV(/span>,测量范围:-200~+1000cm/hr(热流速度)?100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等
植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的、/span>
SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量、/span>
蒸散野/span>=蒸腾?蒸发野/span>
蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补、/span>
蒸发量(evaporation),蒸发量是指在一定时段内+/span>由土壤或水中皃/span>水分经蒸发而散布到空中的量、/span>
1mm(降雨?=1㎡地?kg氳/span>
1mm(蒸腾?=1㎡叶面积?升树液流量(水)
例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)、/span>
技术指栆/span>
测量范围9/span>-200~+1000cm/hr(热流速度)
分辨率:0.001cm/hr
准确度:0.1cm/hr
探针尺寸9/span>1.3mm*L30mm
温度位置:外10mm,内20mm
针距9/span>6mm
探针材质9/span>316不锈钡/span>
温度范围9/span>-30~+70ℂ/span>
响应时间9/span>200ms
加热电阻9/span>39?00J/m
电源9/span>12V DC
电流:空闱/span>5mA 测量<270mA
信号输出9/span>SDI-12
线缆9/span>5m,Max 60m
茎流量传感器参考文献:
1. Kim H.K.; Park J.; Hwang I. Investigating water transport through the xylem network in vascular plants.
J. Exp. Bot. 2014 65 1895?904. [CrossRef] [PubMed]
2. Steppe K.; Vandegehuchte M.W.; Tognetti R.; Mencuccini M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015 35 341?45. [CrossRef] [PubMed]
3. Vandegehuchte M.W.; Steppe K. Sap-flux density measurement methods: Working principles and
applicability. Funct. Plant Biol. 2013 40 213?23. [CrossRef]
4. Marshall D.C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 1958 33 385?96.
[CrossRef] [PubMed]
5. Cohen Y.; Fuchs M.; Green G.C. Improvement of the heat pulse method for determining sap flow in trees. Plant Cell Environ. 1981 4 391?97. [CrossRef]
6. Green S.R.; Clothier B.; Jardine B. Theory and practical application of heat pulse to measure sap flow.
Agron. J. 2003 95 1371?379. [CrossRef]
7. Burgess S.S.O.; Adams M.A.; Turner N.C.; Beverly C.R.; Ong C.K.; Khan A.A.H.; Bleby T.M. An improved heat-pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001 21 589?98. [CrossRef]
8. Forster M.A. How reliable are heat pulse velocity methods for estimating tree transpiration? Forests 2017 8 350. [CrossRef]
9. Bleby T.M.; McElrone A.J.; Burgess S.S.O. Limitations of the HRM: Great at low flow rates but no yet up to speed? In Proceedings of the 7th International Workshop on Sap Flow: Book of Abstracts Seville Spain 22?4 October 2008.
10. Pearsall K.R.; Williams L.E.; Castorani S.; Bleby T.M.; McElrone A.J. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions. Funct. Plant Biol. 2014 41 874?83. [CrossRef]
11. Clearwater M.J.; Luo Z.; Mazzeo M.; Dichio B. An external heat pulse method for measurement of sap flow through fruit pedicels leaf petioles and other small-diameter stems. Plant Cell Environ. 2009 32 1652?663.[CrossRef]
12. Green S.R.; Romero R. Can we improve heat-pulse to measure low and reverse flows? Acta Hortic. 2012 951 19?9. [CrossRef]
13. Green S.; Clothier B.; Perie E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 2009 846 95?04. [CrossRef]
14. Ferreira M.I.; Green S.; Concei??o N.; Fernndez J. Assessing hydraulic redistribution with the
compensated average gradient heat-pulse method on rain-fed olive trees. Plant Soil 2018 425 21?1.
[CrossRef]
15. Romero R.; Muriel J.L.; Garcia I.; Green S.R.; Clothier B.E. Improving heat-pulse methods to extend the measurement range including reverse flows. Acta Hortic. 2012 951 31?8. [CrossRef]
16. Testi L.; Villalobos F. New approach for measuring low sap velocities in trees. Agric. Meteorol. 2009 149 730?34. [CrossRef]
17. Vandegehuchte M.W.; Steppe K. Sapflow+: A four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements. New Phytol. 2012 196 306?17. [CrossRef] [PubMed]
18. Kluitenberg G.J.; Ham J.M. Improved theory for calculating sap flow with the heat pulse method.
Agric. For. Meteorol. 2004 126 169?73. [CrossRef]
19. Vandegehuchte M.W.; Steppe K. Improving sap-flux density measurements by correctly determining
thermal diffusivity differentiating between bound and unbound water. Tree Physiol. 2012 32 930?42.
[CrossRef]
20. Looker N.; Martin J.; Jencso K.; Hu J. Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agric. For. Meteorol. 2016 223 60?1. [CrossRef]
21. Edwards W.R.N.; Warwick N.W.M. Transpiration from a kiwifruit vine as estimated by the heat pulse
technique and the Penman-Monteith equation. N. Z. J. Agric. Res. 1984 27 537?43. [CrossRef]
22. Becker P.; Edwards W.R.N. Corrected heat capacity of wood for sap flow calculations. Tree Physiol 1999 19 767?68. [CrossRef]
23. Hogg E.H.; Black T.A.; den Hartog G.; Neumann H.H.; Zimmermann R.; Hurdle P.A.; Blanken P.D.;
Nesic Z.; Yang P.C.; Staebler R.M.; et al. A comparison of sap flow and eddy fluxes of water vapor from a
boreal deciduous forest. J. Geophys. Res. 1997 102 28929?8937. [CrossRef]
24. Barkas W.W. Fibre saturation point of wood. Nature 1935 135 545. [CrossRef]
25. Kollmann F.F.P.; Cote W.A. Jr. Principles of Wood Science and Technology: Solid Wood; Springer: Berlin Heidelberg Germany 1968.
26. Swanson R.H.; Whitfield D.W.A. A numerical analysis of heat pulse velocity and theory. J. Exp. Bot. 1981 ?2 221?39. [CrossRef]
27. Barrett D.J.; Hatton T.J.; Ash J.E.; Ball M.C. Evaluation of the heat pulse velocity technique for measurement of sap flow in rainforest and eucalypt forest species of south-eastern Australia. Plant Cell Environ. 1995 18 463?69. [CrossRef]
28. Biosecurity Queensland. Environmental Weeds of Australia for Biosecurity Queensland Edition; Queensland Government: Brisbane Australia 2016.
29. Steppe K.; de Pauw D.J.W.; Doody T.M.; Teskey R.O. A comparison of sap flux density using thermal
dissipation heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010 150 1046?056. [CrossRef]
30. Lpez-Bernal A.; Testi L.; Villalobos F.J. A single-probe heat pulse method for estimating sap velocity in trees. New Phytol. 2017 216 321?29. [CrossRef] [PubMed]
31. Forster M.A. How significant is nocturnal sap flow? Tree Physiol. 2014 34 757?65. [CrossRef] [PubMed]
32. Cohen Y.; Fuchs M.; Falkenflug V.; Moreshet S. Calibrated heat pulse method for determining water uptake in cotton. Agron. J. 1988 80 398?02. [CrossRef]
33. Cohen Y.; Takeuchi S.; Nozaka J.; Yano T. Accuracy of sap flow measurement using heat balance and heat pulse methods. Agron. J. 1993 85 1080?086. [CrossRef]
34. Lassoie J.P.; Scott D.R.M.; Fritschen L.J. Transpiration studies in Douglas-fir using the heat pulse technique. For. Sci. 1977 23 377?90.
35. Wang S.; Fan J.; Wang Q. Determining evapotranspiration of a Chinese Willow stand with three-needleheat-pulse probes. Soil Sci. Soc. Am. J. 2015 79 1545?555. [CrossRef]
36. Bleby T.M.; Burgess S.S.O.; Adams M.A. A validation comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct. Plant Biol. 2004 31 645?58.[CrossRef]
37. Madurapperuma W.S.; Bleby T.M.; Burgess S.S.O. Evaluation of sap flow methods to determine water use by cultivated palms. Environ. Exp. Bot. 2009 66 372?80. [CrossRef]
38. Green S.R. Measurement and modelling the transpiration of fruit trees and grapevines for irrigation
scheduling. Acta Hortic. 2008 792 321?32. [CrossRef]
39. Intrigliolo D.S.; Lakso A.N.; Piccioni R.M. Grapevine cv. ‘Riesling water use in the northeastern United
States. Irrig. Sci. 2009 27 253?62. [CrossRef]
40. Eliades M.; Bruggeman A.; Djuma H.; Lubczynski M. Tree water dynamics in a semi-arid Pinus brutia
forest. Water 2018 10 1039. [CrossRef]
41. Zhao C.Y.; Si J.H.; Qi F.; Yu T.F.; Li P.D. Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regul. 2017 82 353?62. [CrossRef]
42. Deng Z.; Guan H.; Hutson J.; Forster M.A.; Wang Y.; Simmons C.T. A vegetation focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations. Water Resour. Res. 2017 53 4965?983. [CrossRef]
43. Doronila A.I.; Forster M.A. Performance measurement via sap flow monitoring of three Eucalyptus species for mine site and dryland salinity phytoremediation. Int. J. Phytoremed. 2015 17 101?08. [CrossRef]
44. Lpez-Bernal .; Alcntara E.; Villalobos F.J. Thermal properties of sapwood fruit trees as affected by
anatomy and water potential: Errors in sap flux density measurements based on heat pulse methods. Trees
2014 28 1623?634. [CrossRef]
- 推荐产品
- 供应产品
- 产品分类
- SMP11短波总辐射传感器Kipp&Zonen
- WeatherLog AerVane螺旋桨风速方向传感器
- 美国Belfort Model 6000能见度传感器
- Hukseflux DR01直接辐射?/a>
- H11-LIN风蚀传感?/a>
- Vaisala云高仪CL31/激光测云仪CL51
- IR20WS地面长波辐射传感器Hukseflux
- SU-LFH高智能土壤环境测试及分析评估系统设备
- MetOne 020C风向传感?/a>
- 土壤颗粒分析测定装置
- 梯度沙尘水平通量降尘收集?/a>
- Hukseflux LP02总辐射传感器
- R.M.Young 05501本安型风向风速传感器
- WindSonic超声波风向风速传感器英国Gill
- ZEN R-52多滤波型太阳光度辐射?/a>
- HFP01热流板Hukseflux
- 新型全天空成像仪
- TFSS1000型高精度热通量温度测量系统
- 美国RMYOUNG BORS-3U海洋气象竘/a>
- 美国R.M.YOUNG 81000VRE三维超声波风向风速仪
- 英国Gill MaxiMet微型气象竘/a>
- BL-2B太阳自动跟踪直接辐射?/a>
- WindObserver 70超声波风速风向传感器英国Gill
- MetOne 024A风向传感?/a>
- MP-11便携式I-V曲线测试?/a>
- 全方位定点集沙仪
- CMP10二级标准总辐射表荷兰Kipp&Zonen
- TDT土壤水分传感?/a>
- Metone 011 E一级风速传感器
- HFP01SC高精度热流传感器Hukseflux
- Lambrecht强降雨式雨量计(15188++(/a>
- 区域生态气象监测站AWES
- 其他
- 农业和食品专用仪?/a>
- 测量/计量仪器
- 植物生理生态仪?/a>
- 光学仪器及设夆/a>
- 辐射测量仪器
- 气体检测仪
- 水质分析
- 波谱仪器
- 光谱检测分析仪
- 工业在线及过程控制仪?/a>
- 应?便携/车载
- 实验室服加/a>