
璐濆厠鏇煎簱灏旂壒鍟嗚锤锛堜腑鍥斤級鏈夐檺鍏徃

宸茶璇?/p>
璐濆厠鏇煎簱灏旂壒鍟嗚锤锛堜腑鍥斤級鏈夐檺鍏徃
宸茶璇?/p>
钘荤被鐮旂┒鐨勫埄鍣 | BioLector XT楂橀€氶噺鍏夌収鍩瑰吇妯″潡锛圠AM锛夌殑灏忕悆钘诲厜钀ュ吇鍩瑰吇搴旂敤瀹炰緥
鎽樿
灏忕悆钘诲洜鍏堕珮铔嬬櫧璐ㄥ惈閲忓拰涓庝笘鐣屽崼鐢熺粍缁囷紙WHO锛夋帹鑽愮殑浜虹被钀ュ吇绱犵浉浼肩殑姘ㄥ熀閰歌氨锛屼互鍙婂瘜鍚汉浣撳繀闇€钀ュ吇绱狅紝骞挎硾搴旂敤浜庨鍝佸拰楗叉枡宸ヤ笟棰嗗煙1銆傛澶栵紝灏忕悆钘诲湪涓嶅埄鐨勭敓闀挎潯浠朵笅鍙Н绱疌16鍜孋18鑴傝偑閰?,3锛屼负姹℃按澶勭悊鍘傜敓浜х敓鐗╃噧鏂欐彁渚涗簡鍙兘1銆侟/p>
鎴戜滑灏嗕负鎮ㄥ睍绀烘惌杞絃AM鐨凚ioLector XT楂橀€氶噺寰瀷鐢熺墿鍙嶅簲鍣紝閫傜敤浜庡皬鐞冭椈鐨勫厜鑷吇鍩瑰吇銆傛澶栵紝涓撻棬璁捐骞堕獙璇佺殑婊ゅ厜鐗囨ā鍧楁敮鎸佸绉嶅叧閿煿鍏诲弬鏁扮殑鍦ㄧ嚎鐩戞祴銆侟/p>
姒傝堪
閫氬父锛屽皬鐞冭椈鏄€氳繃鎽囩摱鍦ㄦ湁闄愮殑瀹為獙閫氶噺涓嬭繘琛屽煿鍏汇€傚煿鍏绘潯浠朵紭鍖栥€佽椈鏍瓫閫夊拰钘绘牚宸ョ▼鏄晢涓氬寲鐨勪笁澶у叧閿楠?锛屼緥濡傦紝閫氳繃缂╃煭鍙剁豢绱犲ぉ绾垮昂瀵镐互鏈€澶ч檺搴﹀湴鎻愰珮澶槼鑳?浜х墿鑳介噺杞崲鏁堢巼5銆傚熀浜庡井瀛旂殑鍩瑰吇璁惧涓哄井鐢熺墿鍜屽摵涔冲姩鐗╃粏鑳炴棭鏈熷揩閫熺瓫閫夋彁渚涗簡涓€绉嶅己澶х殑宸ュ叿6锛屽苟宸叉垚鍔熷簲鐢ㄤ簬寮傚吇寰椈鐢熺墿宸ヨ壓寮€鍙?銆侟/p>
寰瀷鍏夌収鐢熺墿鍙嶅簲鍣紙渭PBR锛夌郴缁燂紝鍙敤浜庣爺绌惰嚜鍏绘垨娣峰悎钀ュ吇鍩瑰吇鏉′欢锛屼絾鐩墠鐨勬蹇电绯诲垪鎶€鏈繕寰堣繙锛岃繘涓€姝ョ殑鏀硅繘鈥斺€斿挨鍏舵槸鍙皟鑺傜収鏄庘€斺€旀槸蹇呰鐨?,9銆侟/p>
鎼浇绮惧瘑鍏夌収妯″潡鐨凚ioLector XT楂橀€氶噺寰瀷鐢熺墿鍙嶅簲鍣紝鍙湪澶氳揪48涓井瀛斾腑鍚屾椂杩涜鍏夎惀鍏诲煿鍏汇€傞€氳繃涓撻棬璁捐鐨勬护鍏夌墖妯″潡锛屽彲瀹炵幇闈炰镜鍏ュ紡銆佸疄鏃跺湪绾跨洃娴嬪叧閿煿鍏诲弬鏁板鐢熺墿閲忋€佸彾缁跨礌娴撳害鍜宲H鍊笺€傚厜鐓фā鍧楋紙LAM锛夊湪鍏夊悎鍏夎氨鑼冨洿鍐呮彁渚涚簿纭€佸鏍峰寲鐨勫厜鐓ф柟妗堛€傚叾鍏夎氨鐨勭伒娲绘€ф槸閫氳繃16绉嶄笉鍚岀殑LED瀹炵幇鐨勶紝姣忎竴涓狶ED閮藉彲浠ュ崟鐙帶鍒讹紝鍙彁渚涜繎4000 渭mol/m2/s鐨勬渶澶ц緪灏勩€侟/p>
鏂规硶
婊ゅ厜鐗囨ā鍧楀紑鍙慄/strong>
缁忎笓闂ㄨ璁″苟娴嬭瘯鐨勬护鍏夌墖妯″潡锛屽彲鐢ㄤ簬鍦ㄧ嚎鐩戞祴澶氱閲嶈鐨勫厜钀ュ吇鍩瑰吇鍙傛暟锛堢敓鐗╅噺銆佸彾缁跨礌鍚噺鍜宲H鍊硷級銆侟/p>
灏忕悆钘狐/strong>
鏃犺弻灏忕悆钘伙紙SAG钘绘牚缂栧彿211-11b锛夌敱鍝ュ环鏍瑰ぇ瀛﹁椈绉嶄繚钘忎腑蹇冩彁渚涖€侟/p>
鍩瑰吇鍩裹/strong>
鍦╬H鍊间负6.5鐨勬敼鑹疊old鍩虹鍩瑰吇鍩猴紙enBBM锛変腑杩涜鍩瑰吇10-13銆侟/p>
鍦ㄦ憞鐡朵腑棰勫煿鍏狐/strong>
灏嗗皬鐞冭椈缃叆鎸箙涓?0mm鐨勬憞鐡朵腑锛屽湪25鈩冨煿鍏荤涓互180rpm鎸€熻繘琛岄鍩瑰吇銆備负瀹炵幇鍏夎惀鍏荤敓闀匡紝鍦ㄥ煿鍏诲鐨勪竴渚у畨瑁匧ED妯″潡锛屽悓鏃跺湪鎽囩摱鍙d娇鐢ㄦ濉烇紝鏂逛究姘斾綋鍑哄叆鍩瑰吇娑层€侺ED妯″潡鐢?涓钩琛屽畨瑁呯殑妯℃嫙澶槼鍏塋ED鐏潯缁勬垚锛圠UMITRONIX LED-Technik GmbH锛夈€傚皢杈愮収搴﹁缃负200渭mol/m2/s锛屼娇涔嬩笌BioLector XT寰瀷鐢熺墿鍙嶅簲鍣ㄥ煿鍏绘椂鐨勮緪鐓у害涓€鑷淬€侟/p>
鍦˙ioLector XT寰瀷鐢熺墿鍙嶅簲鍣ㄤ腑鍩瑰吇
閲囩敤Flowerplate姊呰姳鏉縖M2P-MTP-48-B]杩涜鍏夎惀鍏诲煿鍏伙紝鍒濆缁嗚優瀵嗗害涓?.5*106涓粏鑳?mL锛屽煿鍏讳綋绉负1mL銆傜敤閫忔皵鎬у瘑灏佽啘锛圡TP-F-GPRS-48-10锛夊瘑灏佸井瀛旀澘锛屾柟渚垮厜鍚堜綔鐢ㄦ湡闂翠簩姘у寲纰冲拰姘ф皵鐨勪氦鎹€€傜収鏄庢ā鍧楄缃负鎻愪緵400~700nm鐨勭被澶槼鍏夎氨锛屽厜瀛愰€氶噺瀵嗗害绾︿负200 渭mol/m2/s锛堝浘1锛夈€侟/p>
鍥?. 鍩瑰吇鏈熼棿鐨勭収鏄庡厜璋卞拰杈愮収搴?/p>
灏嗗煿鍏诲弬鏁拌缃负800 rpm銆?5鈩冨拰85% 鐨勭浉瀵规箍搴︼紝骞舵寜10 mL/min娴侀€熷厖鍏ョ┖姘斿拰 2% 鐨凜O2娣峰悎鐗┿€侟/p>
缁撴灉
婊ゅ厜鐗囨ā鍧楁牎鍑咟/strong>
鍥?.婊ゅ厜鐗囨ā鍧楁牎鍑嗙粨鏋滃浘缁凕/p>
鐢熺墿閲廃/strong>
缁忎笓闂ㄥ紑鍙戠殑730銆?50鍜?50 nm鐢熺墿閲忔护鍏夌墖妯″潡锛屽彲鍦?.3鈮D750鈮?5鑼冨洿鍐呮樉绀哄嚭鍗撹秺鐨勬牎鍑嗘晥鏋滐紝730 nm妯″潡鏍″噯缁撴灉濡傚浘2.A鎵€绀恒€傛澶栵紝浣跨敤鍙剁豢绱燼鍜屽彾缁跨礌b鏍囧噯鍝侊紝鏈彂鐜板彾缁跨礌骞叉壈銆侟/p>
鍙剁豢绱犲惈閲廃/strong>
鍙剁豢绱犳牎鍑嗙粨鏋滄樉绀猴紝缁忎笓闂ㄨ璁$殑婊ゅ厜鐗囨ā鍧楀彲鍗曠嫭鎴栧悓鏃舵娴嬪彾缁跨礌a鍜屽彾缁跨礌b锛屽鍥?.B鎵€绀恒€侟/p>
鍙剁豢绱犺崸鍏夊父鐢ㄤ簬娴嬪畾鍏夎惀鍏诲煿鍏荤墿鐨勭敓鐗╅噺14,15銆傚洜姝わ紝浣跨敤鐢熺墿閲忕郴鍒楃█閲婃恫杩涜鏍″噯锛屽簲鐢ㄦ寚鏁伴€掑噺鎷熷悎鏃讹紝鍦ㄤ綆鐢熺墿閲忔祿搴︿笅鍙瀵熷埌鏋佷匠鐨勫垎杈ㄧ巼濡傚浘2.C鎵€绀恒€傛牎鍑嗙粨鏋滆瘉瀹烇紝鍙剁豢绱犺崸鍏夋护鍏夌墖鍣ㄥ彲鍑嗙‘娴嬪畾鐢熺墿閲忔祿搴︼紝鐗瑰埆鏄湪鐢熺墿閲忔祿搴﹁緝浣庣殑鏃跺€欍€侟/p>
pH鍊稽/strong>
鍒嗗埆鍦?5銆?0銆?5鍜?0鈩冧笅锛屼娇鐢ㄥ惈0.1 mg/L HPTS鐨刾H 5~10缂撳啿婧舵恫锛圡erck, Darmstadt, DE锛夊pH婊ゅ厜鐗囨ā鍧楄繘琛屾牎鍑嗐€傛牎鍑嗙粨鏋滃嚭鑹诧紙鍥?.D锛夛紝璇佹槑鎵€璇ヨ缃€傜敤浜庡湪绾垮噯纭祴瀹歱H鍊笺€侟/p>
涓虹‘淇濇嫙瀹氭柟娉曞鍏夋紓鐧戒笉鏁忔劅锛屾垜浠湪BioLector XT寰瀷鐢熺墿鍙嶅簲鍣ㄤ腑浣跨敤鏃犳帴绉嶇墿enBBM鍦?00渭mol/m2/s鍏稿瀷鍩瑰吇鏉′欢杩涜鍩瑰吇瀹為獙锛堝浘2.E锛夈€傚疄楠屽紑濮嬪悗锛孋O2娴撳害鐨勫鍔犱娇鍩瑰吇鍩鸿繀閫熼吀鍖栵紙~0.05pH锛夛紝浣嗗湪涔嬪悗鐨?30灏忔椂鍐咃紝娴嬮噺鍊硷紙鍥?.E锛夊缁堜繚鎸佹亽瀹氥€傝繖涓€鐐硅瘉鏄庯紝鍦ㄨ繛缁厜鐓х殑鍩瑰吇鏉′欢涓嬶紝浣跨敤HPTS娴嬪畾pH锛屽彲杩炵画澶氭棩淇濇寔鍑嗙‘銆佺ǔ瀹氱殑娴嬮噺姘村钩銆侟/p>
鍦˙ioLector XT寰瀷鐢熺墿鍙嶅簲鍣ㄤ腑骞惰鍏夎惀鍏诲煿鍏狐/strong>
缁忚繃瀵规护鍏夌墖妯″潡杩涜楠岃瘉涔嬪悗锛屾垜浠紑濮嬮暱鏈熷煿鍏伙紝骞朵娇鐢ㄥ洓涓护鍏夌墖妯″潡杩涜鍦ㄧ嚎鐩戞祴锛?30nm鐨勬暎灏勫厜妯″潡锛屽彾缁跨礌鑽у厜婊ゅ厜鐗囨ā鍧楋紙位ex=450nm锛浳籩m=700nm锛夊拰涓ょHPTS婊ゅ厜鐗囨ā鍧楄繘琛屾瘮鍊紁H娴嬪畾(鍥?)
鍥?. 鎼浇鍏夌収妯″潡鐨凚ioLector XT寰瀷鐢熺墿鍙嶅簲鍣紝涓烘湡16澶╃殑鍩瑰吇涓墍鐩戞祴鐨勬暎灏勫厜銆佸彾缁跨礌鍜宲H鍊稽/p>
濡傚浘3鎵€绀猴紝涓烘湡16澶╃殑鍩瑰吇鐩戞祴涓紝鐢熺墿閲忔祿搴︽寔缁鍔狅紝鐩磋嚦CO2渚涘簲琚叧闂€傚浘涓彲瑙傚療鍒颁簲涓笉鍚岀殑鐢熼暱闃舵锛欬/p>
棣栧厛鏄粸鍚庣殑鎸囨暟鐢熼暱鏈燂紙i.锛夛紝涔嬪悗鏄笁涓笉鍚岀殑绾挎€х敓闀挎湡锛圛I.鑷矷V.锛夛紝鏈€鍚庢槸CO2鑰楀敖鍚庤繘鍏ョ殑姝讳骸闃舵锛圴.锛夈€俻H鍜屽彾缁跨礌淇″彿鐨勫彉鍖栬繃绋嬩笌瑙傚療鍒扮殑鐢熼暱闃舵鐩稿叧銆傚湪鏁翠釜瀹為獙杩囩▼涓紝鏁e皠鍏変俊鍙风殑骞冲潎鍙樺紓绯绘暟涓?.2%锛屽洜姝ゅ彲鍦ㄥ缓璁殑璁剧疆涓繘琛屽钩琛屽厜钀ュ吇鍩瑰吇銆傜绾挎牱鏈獙璇佷簡鍦ㄧ嚎淇″彿鐨勫噯纭€с€?35灏忔椂鍚庨噰鏍凤紙姝ゆ椂鐢变簬鐭殏鏆撮湶浜庡ぇ姘斾腑鐨凜O2娴撳害涓紝pH鍊煎崌楂橈級锛岀绾縊D750鍊间负40锛岀绾縫H鍊间负7.3锛岃繖涓庡湪绾挎祴瀹氱殑pH鍊?.2楂樺害涓€鑷淬€傚湪瀹為獙缁撴潫鏃讹紝绂荤嚎OD750鍊间负60宸﹀彸锛岃〃鏄庡湪瀹為獙杩囩▼涓煿鍏荤墿鐢熼暱鏃虹洓瀵艰嚧浜х敓杈冮珮鐨勭敓鐗╅噺娴撳害銆侟/p>
缁撹
鍏夌収妯″潡鐨勫姞鍏ヤ负BioLector寮€鍒涗簡鍏ㄦ柊鐨勫簲鐢ㄩ鍩熴€傛湰鏂囧簲鐢ㄦ渚嬩腑鎵€浠嬬粛鐨勫嚑绉嶆护鍏夌墖妯″潡锛屽彲鍑嗙‘鐩戞祴鍏抽敭鐨勫厜钀ュ吇鍩瑰吇鍙傛暟锛屽鐢熺墿閲忔祿搴︺€佸彾缁跨礌鍚噺鍜宲H鍊笺€侟/p>
鍙剁豢绱犺崸鍏夋护鍏夌墖妯″潡鍦ㄤ綆娴撳害鐢熺墿閲忔祴瀹氫腑鍏锋湁鑹ソ鐨勫垎杈ㄧ巼锛屼笌鍦ㄩ珮缁嗚優瀵嗗害涓嬪噯纭殑鏁e皠鍏夋祴閲忕浉寰楃泭褰?6銆傛澶栵紝鐮旂┒璇佹槑锛屽熀浜嶩PTS鐨刾H娴嬪畾娉曟槸鏇夸唬optode娴嬮噺鐨勭悊鎯宠В鍐虫柟妗堬紝鍗充究鍦ㄨ繛缁収鏄庣殑鏉′欢涓嬶紝璇ユ柟娉曚篃鍚屾牱閫傜敤銆侟/p>
灏忕悆钘荤殑闀挎湡鍩瑰吇璇佸疄锛孊ioLector绯荤粺鍙敤浣滃苟琛屻€侀珮閫氶噺鍩瑰吇鐨勫井鍗囩骇鍏夌収鐢熺墿鍙嶅簲鍣ㄣ€傛澶栵紝缁忎笓闂ㄨ璁$殑婊ゅ厜鐗囨ā鍧楀彲璇勪及鍩瑰吇鐗╃敓闀跨殑鍦ㄧ嚎淇℃伅锛屽苟鎻ず涓嶅悓鐨勭敓闀块樁娈点€侟/p>
杩欎簺缁撴灉璇佸疄璇ュ钩鍙板彲閫氳繃涓嶅悓鏂瑰紡浼樺寲鍚勭搴旂敤鐨勫厜钀ュ吇鍩瑰吇銆傜簿蹇冭璁$殑鍏夌収妯″潡锛屾敮鎸佸湪涓嶅悓鐓ф槑鏉′欢涓嬭缃緝瀹界殑鍏夎氨鍜岃緪鐓у害鑼冨洿锛屼互渚夸紭鍖栫収鏄庢潯浠躲€傚绡囨枃鐚凡鎶ラ亾杩欎簺鐓ф槑鐗规€у彲褰卞搷钘荤被鐢熼暱9,17-21銆侟/p>
鍦˙ioLector XT涓紝鍙€氳繃姘斾綋娴侀噺鍜屾皵浣撴垚鍒嗘敼鍙樺疄楠岀殑姘斾綋鍩瑰吇鏉′欢锛岃繖鏄厜钀ュ吇鍩瑰吇涓殑涓€涓噸瑕佸弬鏁帮紝渚嬪锛孋O2瀵岄泦鍙幏寰楁洿楂樼殑鐢熺墿閲忔祿搴?,19銆傚叾浠栧奖鍝嶅井钘诲煿鍏荤殑鍏抽敭鍥犵礌鍖呮嫭娓╁害22,23銆乸H1,20銆佺洂搴?4銆佺⒊婧?5-27銆佹爱婧?9,27鍜屽煿鍏诲熀鎴愬垎28銆侭ioLector XT鍙紭鍖栨墍鏈夎繖浜涘弬鏁般€傛澶栵紝寤鸿閲囩敤鍒嗘壒琛ユ枡鍩瑰吇鏉ユ彁楂樿剛璐ㄤ骇閲?9銆傜敱浜庣洃绠¢檺鍒讹紝鏈夊叧鍩哄洜宸ョ▼钘绘牚娼滃姏鐨勭爺绌跺拰搴旂敤鏋佸皯锛屼絾钘绘牚缁忓熀鍥犳敼閫狅紝鍙兘鍏锋湁鏇撮珮鐨勭敓闀块€熺巼鍜岀粏鑳炲瘑搴︼紝鏇撮珮鐨勭敓浜ч€熺巼鎴栨淮搴︼紝鏇村己鐨勯瞾妫掓€ф垨鏇村ソ鐨勫お闃宠兘-鐢熺墿閲忚浆鎹㈡晥鐜囧拰鍏夊悎鐢熶骇鍔?0,5,31,32銆侟/p>
鎵€鏈夎繖浜涘洜绱犲潎鍙€氳繃鎼浇LAM鐨凚ioLector XT寰瀷鐢熺墿鍙嶅簲鍣ㄨ繘琛岀爺绌跺拰浼樺寲锛屽姪鍔涚爺绌朵汉鍛樺姞蹇爺绌惰繘绋嬶紝涓哄疄鐜拌椈绫绘綔鑳芥墍闇€鐨勭瓟妗堟彁渚涘府鍔┿€侟/p>
鍙傝€冩枃鐚細
1. Ru, I.T.K., et al., Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts.Applied Phycology, 2020. 1(1): p. 2-11.2. Yeh, K.-L. and J.-S. Chang, Effects of cultivation conditions and media composition on cell growth and lipid productivity ofindigenous microalga Chlorella vulgaris ESP-31. Bioresource technology, 2012. 105: p. 120-127.3. Maruyama, I., et al., Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus, inLive Food in Aquaculture. 1997, Springer. p. 133-138.4. Chisti, Y., Constraints to commercialization of algal fuels. Journal of biotechnology, 2013. 167(3): p. 201-214.5. Melis, A., Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximizeefficiency. Plant science, 2009. 177(4): p. 272-280.6. Ojo, E.O., et al., Design and parallelisation of a miniature photobioreactor platform for microalgal culture evaluation andoptimisation. Biochemical Engineering Journal, 2015. 103: p. 93-102.7. Hillig, F., et al., Bioprocess Development in Single-Use Systems for Heterotrophic Marine Microalgae. Chemie IngenieurTechnik, 2013. 85(1-2): p. 153-161.8. Morschett, H., et al., Laboratory-scale photobiotechnology-current trends and future perspectives. FEMS Microbiol Lett,2018. 365(1).9. Kiss, B. and 脕. N茅meth, High-throughput microalgae cultivation with adjustable LED-module applying different colours forNannochloropsis and Chlorella microcultures. Acta Alimentaria, 2019. 48(1): p. 115-124.10. Bischoff, H.W. and H.C. Bold, Some soil algae from Enchanted Rock and related algal species. 1963, Austin, Tex.: Universityof Texas.11. Bold, H.C., The Morphology of Chlamydomonas chlamydogama, Sp. Nov. Bulletin of the Torrey Botanical Club, 1949. 76(2):p. 101-108.12. Andersen, R.A., Algal culturing techniques. 2005, Burlington, Mass.: Elsevier/Academic Press.13. Morschett, H., W. Wiechert, and M. Oldiges, Accelerated Development of Phototrophic Bioprocesses: A ConceptualFramework. 2017, RWTH Aachen University.14. Wiltshire, K.H., et al., The determination of algal biomass (as chlorophyll) in suspended matter from the Elbe estuary andthe German Bight: A comparison of high-performance liquid chromatography, delayed fluorescence and promptfluorescence methods. Journal of Experimental Marine Biology and Ecology, 1998. 222(1): p. 113-131.15. Ramaraj, R., D.D. Tsai, and P.H. Chen, Chlorophyll is not accurate measurement for algal biomass. Chiang Mai Journal ofScience, 2013. 40(4): p. 547-555.16. m2p-labs GmbH, Baesweiler Germany, The scattered light signal: Calibration of biomass. 2015.17. Carvalho, A.P., et al., Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. AppliedMicrobiology and Biotechnology, 2011. 89(5): p. 1275-1288.18. Johnson, T.J., et al., Photobioreactor cultivation strategies for microalgae and cyanobacteria. Biotechnology Progress,2018. 34(4): p. 811-827.19. Daliry, S., et al., Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global journal of environmentalscience and management, 2017. 3(2).20. Gong, Q., et al., Effects of Light and pH on Cell Density of Chlorella Vulgaris. Energy Procedia, 2014. 61: p. 2012-2015.21. Sforza, E., et al., Adjusted Light and Dark Cycles Can Optimize Photosynthetic Efficiency in Algae Growing inPhotobioreactors. PLoS ONE, 2012. 7(6): p. e38975.22. Serra-Maia, R., et al., Influence of temperature on Chlorella vulgaris growth and mortality rates in a photobioreactor. AlgalResearch, 2016. 18: p. 352-359.23. Converti, A., et al., Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsisoculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification,2009. 48(6): p. 1146-1151.24. Minhas, A.K., et al., A Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids andCarotenoids. Frontiers in Microbiology, 2016. 7.25. Kong, W., et al., The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorellavulgaris under mixotrophic cultivation. African Journal of Biotechnology, 2011. 10(55): p. 11620-11630.26. Scarsella, M., et al., Study on the optimal growing conditions of Chlorella vulgaris in bubble column photobioreactors.Chem. Eng, 2010. 20: p. 85-90.27. Heredia-Arroyo, T., et al., Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulationfrom non-sugar materials. Biomass and Bioenergy, 2011. 35(5): p. 2245-2253.28. Blair, M.F., B. Kokabian, and V.G. Gude, Light and growth medium effect on Chlorella vulgaris biomass production. Journalof Environmental Chemical Engineering, 2014. 2(1): p. 665-674.29. Keil, T., et al., Polymer-based ammonium-limited fed-batch cultivation in shake flasks improves lipid productivity of themicroalga Chlorella vulgaris. Bioresour Technol, 2019. 291: p. 121821.30. Hallmann, A., Algae biotechnology鈥揼reen cell-factories on the rise. Current Biotechnology, 2015. 4(4): p. 389-415.31. Fayyaz, M., et al., Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnology Advances, 2020.43: p. 107554.32. Ng, I.S., et al., Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio-Based Chemicals.Biotechnology Journal, 2017. 12(10): p. 1600644.
鏈€鏂板姩鎬?/p>鏇村