北京澳作生态仪器有限公号/div>
首页 > 产品中心 > 植物生理生态仪 > PSK植物胁迫测量套件
产品详情
PSK植物胁迫测量套件

J200飞秒激光剥蚀固体进样系统

公司品牌
品牌传达企业理念

产品简今/div>

应用

Y(II)?#916;F/FM (FM FS )/FM? 是经受时间考验的光适应测量参数,比FV/FM对更多类型的植物胁迫更加敏感。已有的大量证据表明FV/FM对许多种植物胁迫和健康植物的光系统II的测量十分出色,而Y(II)或光量子产额则可测量实际光照下光适应环境和生理状况的光系统II的效率、/p>

原理

采用调制饱和脉冲原理,测量植物的叶绿素荧光,通过相关文献的研究成果,计算植物的光量子产额及相对电子传递速率,同时可测量PAR、叶温、相对湿度等环境参数、/p>

特点

叶片吸收测量:提供叶片吸收测量及随环境变化导致的叶片吸收变化。根据Eichelman (2004) 叶片吸收在健康植物的变化范围?.7~0.9 之间。因此,为获得准确的ETR或‛em>J”,Y(II)测量仪提供了一个可靠的测量方法+/p>

FV/FM测量单元:可额外选配FV/FM测量仪,用于暗适应测量、/p>

具有暗适应叶夹

阳光下屏幕可?/p>

图形显示FV/FM曲线

2GB存储空间

USB通讯

数据Excel查看

先进皃/strong>PAR叶夹:采用底部叶夹打开装置,防止测量时误操作打开叶夹。对传感器进行余弦校正,确保叶片相对测量光的角度不变、/p>

FM’校止/strong>:对于具有高光照强度历史的植物,完全关闭光反应中心是一个问题,Y(II)测量仪使用Loriaux &Genty 2013的方法进行FM’校正,确保误差*小、/p>

自动调制光设宙/strong>:快速准确自动的调整合适的调制光强,避免人工操作的误差、/p>

先进算法避免饱和脉冲NPQ:采?5ms?点的平均值确定FM’,消除饱和脉冲NPQ的影响、/p>

更精确的叶温测量:采用非接触式红外测量,测量精度可达0.5℃、/p>

直接测量相对湿度:含有测量气体交换使用的固态传感器,可测量相对湿度、/p>

降低叶片遮挡的设讠/strong>:倾斜的角度减少对叶片的遮挡,可以测量拟南芥等小叶、/p>

系统组成

标配9/p>

Y(II)光量子产额测量仪、充电器、USB电缆、便携箱?个吸收测量单元、U盘(包含说明书)、/p>

可选:

FV/FM测量仪及10个暗适应叶夹、三脚架、/p>

技术指栆/strong>

测量参数9/p>

Y(II)?#916;F/Fm‘、ETR、PAR、T、FMS或FM’、Fs?#945;(叶片吸收)、/p>

监测模式:可使用电脑,长时间监测Y(II)、ETR、叶片吸收、PAR、叶温、相对湿度、及计算NPQ、/p>

相对湿度?%~95%?#177;2%、/p>

可选参数:FV/FM、FV/FO,FO FM FV、/p>

可使用AC或USB供电,可配三脚架、/p>

技术参?/strong>9/p>

光源

饱和脉冲:白色LED具有PAR?000mols

调制光:红色LED 660nm,具?90nm短波过滤、/p>

光化光源:仅可使用外部光溏/p>

检测方法:调制脉冲泔/p>

检测器&过滤器:具有700~750nm带通过滤的PIN光电二极箠/p>

取样速率?~10000?秒自动切换、/p>

测量时间?s或长期监浊/p>

存储空间?GB

输出:USB

尺寸:便携箱尺寸?4”x 11”x 6”,仪器?’’长

质量:Y(II) 测量?.45 kg

FV/FM测量?.36 kg.

总重1.95 kg.

产地

美国

文献

Adams & Demming-Adams 2004 Chlorophyll Fluorescence as a tool to Monitor Plant Response to the Environment. William W. Adams III and Barbara Demmig-Adams From Chapter 22 “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee published by Springer 2004 PO Box 17 3300 AA Dordrecht The Netherlands pages 598 -599

Adams WW III Demmig-Adams B. (1994) Carotenoid composition and down regulation of Photosystem II in three conifer species during the winter. Physiol Plant 92: 451-458

Ball MC. (1994) The role of photoinhibition during seedling establishment at low temperatures. In: Baker NR. And Bowyer JR. (eds) Photoinhibition of Photosynthesis. From Molecular Mechanisms to the Field pp365-3376 Bios Scientific Publishers Oxford

Ball MC. Butterworth JA. Roden JS. Christian R. Egerton JJG. (1995) Applications of chlorophyll fluorescence to forest ecology. Aust. J. Plant Physiology 22: 311-319

Baker N.R Rosenquist E. (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities Bukhov & Carpentier 2004 Effects of Water Stress on the Photosynthetic Efficiency of Plants Bukhov NG. & Robert Carpentier From Chapter 24 “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George

Papaqeorgiou and Govindjee published by Springer 2004 PO Box 17 3300 AA Dordrecht The Netherlands page 627-628 Burke J. (2007) Evaluation of Source Leaf Responses to Water-Deficit Stresses in Cotton Using a Novel Stress Bioassay Plant Physiology Jan. 2007 Vol 143 pp108-121

Burke J. Franks C.D. Burow G. Xin Z. (2010) Selection system for the Stay-Green Drought Tolerance Trait in Sorghum Germplasm Agronomy Journal 102:1118-1122 May 2010

Cavender-Bares J. & Fakhri A. Bazzaz 2004 “From Leaves to Ecosystem: Using Chlorophyll Fluorescence to Assess Photosynthesis and Plant Function in Ecological Studies? Jeannine Cavender Bares Fakhri A. Bazzaz From Chapter 29 “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee published by Springer 2004 PO Box 17 3300 AA Dordrecht The Netherlands page 746-747 ETR Drought stress and npq

Cazzaniga S Osto L.D. Kong S-G. Wada M. Bassi R. (2013) “Interaction between avoidance of photon absorption excess energy dissipation and zeaxanthin synthesis against photo oxidative stress in Arabidopsis”, The Plant Journal Volume 76 Issue 4 pages568?79 November 2013 DOI: 10.1111/tpj.12314

Cheng L. Fuchigami L. Breen P. (2001) “The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves.“/p>

Adams WW III Demmig-Adams B. Vernhoeven AS. and Barker DH. (1995) Photoinhibition during winter stress Involvement of sustained xanthophyll cycle-dependent energy-dissipation. Aust J. Plant Physiol 22: 261-276 Journal of Experimental Botany 55(403):1607-1621

Journal of Experimental Botany 52(362):1865-1872Crafts-Brandner S. J. Law R.D. (2000) Effects of heat stress on the inhibition and recovery of ribulase-1 5- biphsphate carboxylase/ oxygenase activation state. Planta (2000) 212: 67-74

all’Osto L Cazzaniga S Wada M Bassi R. (2014) On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant. Phil. Trans. R. Soc. B 369: 20130221.

da Silva J. A. & Arrabaca M.C. (2008).Physiologia Plantarum Volume 121 Issue 3 Pages 409 420 2008

Eichelman H. Oja V. Rasulov B. Padu E. Bichele I. Pettai H. Niinemets O. Laisk A. (2004) Development of Leaf Photosynthetic Parameters in Betual pendula Roth Leaves: Correlation with Photosystem I Density Plant Biology 6 (2004):307-318

Eyodogan F. Oz M. T. (2007) Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol Plant (2007) 29:485-493

Flexas 1999 “Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines”J. FLEXAS J. M. ESCALONA & H. MEDRANO Plant Cell & Environment Volume 22 Issue 1 Page 39-48 January 1999

Flexas 2000 “Steady-State and Maximum Chlorophyll Fluorescence Responses to Water Stress In Grape Vine Leaves: A New Remote Sensing System”, J. Flexas MJ Briantais Z Cerovic H Medrano I Moya Remote Sensing Environment 73:283-270 Physiologia Plantarum Volume 114 Number 2 February 2002 pp. 231-240(10)

Gonias E. D. Oosterhuis D.M. Bibi A.C. & Brown R.S. (2003) YIELD GROWTH AND PHYSIOLOGY OF TRIMAX TM TREATED COTTON Summaries of Arkansas Cotton Research 2003

Hendrickson L. Furbank R. & Chow (2004) A simple alternative approach to assessing the fate of absorbed Light energy using chlorophyll fluorescence. Photosynthesis Research 82: 73-81

Kramer D. M. Johnson G. Kiirats O. Edwards G. (2004) New fluorescence parameters for determination of QA redox state and excitation energy fluxes. Photosynthesis Research 79: 209-218

Krause G.H. Weis E. (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. 5 139-157.

Krupa Z. Oquist G. and Huner N. (1993) The effects of cadmium on photosynthesis of Phaseolus vulgaris a fluorescence analysis. Physiol Plant 88 626-630

D Edwards GE and Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37: 89?02

Laisk A and Loreto F (1996) Determining photosynthetic parameters from leaf CO2exchange and chlorophyll fluorescence. Ribulose-1?-bisphosphate carboxylase / oxygenase specificity factor dark respiration in the light excitation distribution between photosystems alternative electron transport rate and mesophyll diffusion resistance. Plant Physiol 110: 903?12

Photosynthesis in the water-stressed C grass is mainly limited by stomata with both rapidly and slowly imposed water deficits. Flexas (2002) Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2assimilation and stomatal conductance during water-stress in C plants Flexas J. Escalona J. M. Evain S. Gulas J. Moya I. Charles Barry Osmond C.B. and Medrano H. 4 Setaria sphacelata

Earl H. Said Ennahli S. (2004) Estimating photosynthetic electron transport via chlorophyll fluorometry without Photosystem II light saturation. Photosynthesis Research 82: 177186 2004.Laisk A. Oja V Eichelmanna H. Luca Dall'Osto L. (2014) Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1 Biochimica et Biophysica Acta 1837 (2014) 315?25

Loriaux S.D. R.A Burns,Welles J.M. McDermitt D.K. Genty B. (2006) “Determination of Maximal Chlorophyll Fluorescence Using A Multiphase Single Flash of Sub-Saturating Intensity? Abstract # P13011 August 1996.

American Society of Plant Biologists Annual Meetings Boston MA LORIAUX S.D AVENSON T.J. WELLES J.M. MCDERMITT D.K. ECKLES R. D. RIENSCHE B. & GENTY B. (2013) Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity Plant Cell and Environment (2013) 36 1755?770 doi: 10.1111/pce.12115

Maai E. Shimada S. Yamada M.,, Sugiyama T. Miyake H. and Taniguchi M. (2011) The avoidance and aggregative movements of mesophyll chloroplasts in C4 monocots in response to blue light and abscisic acid Journal of Experimental Botany Vol. 62 No. 9 pp. 3213?221 2011 doi:10.1093/jxb/err008 Advance Access publication 21 February 2011

Moradi F. and Ismail A. (2007) Responses of Photosynthesis Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in Rice Annals of Botany 99(6):1161-1173

Nedbal L. Whitmarsh J. (2004) Chlorophyll Fluorescence Imaging of Leaves and Fruits From Chapter 14 “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee published by Springer 2004 PO Box 17 3300 AA Dordrecht TheNetherlands page 389 -407

Netondo G. Onyango J. and Beck E. (2004) Sorghum and Salinity I. Response of Growth,Water Relations and Ion Accumulation to NaCl Salinity Crop Science 44:797-805

Siffel P. & Braunova Z. (1999) Release and aggregation of the light-harvesting complex in intact leaves subjected to strong CO2 deficit. Photosynthesis Research 61: 217-226

Strasser R.J Tsimilli-Michael M. and Srivastava A. (2004) - Analysis of Chlorophyll a Fluorescence Transient. From Chapter 12 “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee published by Springer 2004 PO Box 17 3300 AA Dordrecht The Netherlands page 340 Tripathy BC Bhatia B. Mohanty P. (1981) Inactivation of chloroplast photosynthetic electron transport activity by Ni ++. Biochim Biophys Acta 638:217-224

Vredenberg W. Kay J. and Russotti R. (2013) The instrumental implementation of a routine for quantitative analysis of photochemical-induced variable chlorophyll fluorescence in leaves: Properties and prospects. ISPR conference in St. Louis Poster e-mail: wim.vreden*********** e-mail: ?iv k M. Bresti M. Ol?ovsk K. Slamka P.(2008) Performance index as a sensitive indicator of water stress in PLANT SOIL ENVIRON. 2008 (4): 133?39

Oquist G. and Huner N. (1991) Effects of Cold acclimation on the susceptibility of photosynthesis to photoinhibition in Scots pine and in winter and spring serials: A fluorescence analysis. Functional Ecology 5: 91-100

  • 推荐产品
  • 供应产品
  • 产品分类