证:工商信息已核宝br /> 访问量:129983
—同时用于涡度系统和自动土壤气体通量箱系绞/strong>
激光痕量气体监测仪基于中红外量子级联激光TILDAS技术监测大气中的痕量气体,可实现高时间分辨率(高达10 Hz)的实时气体分子测量。采用直接光谱吸收技术,并结合系统内的多反腔(Astigmatic Multipass Absorption Cells)所提供的长?6m的光程,检测限远远高于同类产品,检测限达ppt级、/span>
每秒可执?0次独立测量,适用于生态系统涡度(Eddy Covariance)测量、/span>
单激光痕量气体监测仪:测量NO,N2O,NO2,NH3,CO,CO2,CH4,C2H6,COS,HCHO,O3等,同时检测水汽、/span>
例如:N2O、CH4和水汽;N2O、CO 和水汽;N2O、CO2和水汽; CO、CO2、N2O、水汽、/span>
双激光痕量气体监测仪:同时测量多种气体,如NO,N2O,NO2,NH3,HONO,HNO3,CO,CH4,C2H4,HCHO,CHOOH,SO2,COS,O3,HOOH等。根据不同的监测环境和要求,可选择增强的灵敏度或增强的时间响应、/span>
l **痕量气体浓度测量,无需校准气体、/span>
l 快速响库/span>
l 不受其它气体或水汽的干扰
l 无人值守操作
l 可在野外测量和也可部署在移动平台三/span>
l 双激光器允许同时测量更多的种类、/span>
l 光程长度?6米或 210籲/span>
l 燃烧监测和表?/span>
l 用于?汇表征的CH4和N2O的同位素监测、/span>
l 涡度相关测量
l 快速响应羽流研穵/span>
l 空气质量监测
l 船舶、卡车和飞机平台的移动测野/span>
产品还包?/strong>9/span>
l 双激光CO213C?/span>18O同位素监测仪
l 双激光CO2二元同位素(clumped isotope of CO2)监测仪
l N2O和NO的双激光监测仪 适用于土壤排攽/span>
l HONO监测? HONO是污染环境中重要的大气物种,
在土壤科学中可能很重要、/span>
l HCHO监测仪 甲醛是污染环境中重要的大气物?
l CH4和N2O同位素监测 这些都是困难的测量
只有经验丰富的团队才能取得成功、/span>
l N2O CO CO2 CH4 C2H6and H2O双激光监测仪.
l N2O CO CO2 CH4 COS and H2O双激光监测仪.
l NO和NO2或NO和臭氧的双激光监测仪.
特点优势9/strong>
1?/span>响应速度?/strong>
涡度协方差技术用于测量大气和生物圈之间的气体分子通量。在大多数情况下,客户需要能够每秒进?0次独立测量的仪器。对于将气体进样到光室(optical cell)中的仪器,这要求气体流速足够快以在0.1秒内更换光室内的气体,并且在该速度下进行光谱测量 Aerodyne在提供这种能力方面几乎是****的,测量速度远高于同类产品、/span>
2、极高的测量精度
N2O监测?/strong>?0s 采用10ppt,是其它仪器?/10; 其它仪器1s采用100ppt,而Aerodyne 采用30ppt,只传输15ppt、/span>
3、极高的灵敏?/strong>
优异的测量精度可以保持在0.1秒到100秒之间 附图显示了N2O监测仪结合土壤气体通量自动箱可以实现极高的灵敏度,测到了非常小的N2O通量 在未施肥的草地上,自动箱关闭后N2O的上升速率?ppt / sec。即使在5分钟内,上升速率也可以精确确定 每秒采集一个数据点 该上升速率对应于小通量?ugN2O-N / m2/小时?.08nmoles / m2/ s 我们估计*小可检测的通量约为0.1ug N2O-N / m2/h?.001 nmoles/m2/s
相似的结果见Savage et al.[Savage K. R. Phillips and E. Davidson. "High temporal frequency measurements of greenhouse gas emissions from soils." Biogeosciences 11.10 (2014): 2709.]
4?/span>灵活的采样系绞/strong>
激光痕量气体监测仪的高精度非常适用于涡度协方差通量观测和土壤自动箱通量观测、/span>
可实现一个独特的功能9/span>当风况良好时测量涡度通量,当风非常弱时测量土壤自动箱通量 还提供其它各种自动化采样系统、/span>
应用文献9/strong>
1?/strong>NATURE Vol 534 30 June 2016
温带森林光合和日间呼吸的季节?/span>
Seasonality of temperate forestphotosynthesis anddaytime respiration[2]
R. Wehr1 J. W. Munger2 J. B. McManus3 D. D. Nelson3 M. S. Zahniser3 E. A. Davidson4 S. C. Wofsy2 & S. R. Saleska1。其中同位素通量观测中采用的是Aerodyne CO2Isotope Monitor二氧化碳同位素监测仪+/span>
2?/strong>来自NATURE () 上的科学报告
忽视日变化导致陆地一氧化二氮排放的不确定?/span>
Neglecting diurnal variations leads to uncertainties in terrestrial nitrous oxide emissions[3]
Narasinha J. Shurpali1 llar Rannik2 Simo Jokinen1 Saara Lind1 Christina Biasi1+/span>
Ivan Mammarella2 Olli Peltola2 Mari Pihlatie2? Niina Hyv?nen1 Mari R?ty4+/span>
Sami Haapanala2 Mark Zahniser5 Perttu Virkaj?rvi4 Timo Vesala2?? & Pertti J. Martikainen1
3、意大利北部泥浆扩散期间通过涡流协方差对氨挥发动力学的测量研穵/strong>
Dynamics of ammonia volatilisation measured by eddy covariance during slurry spreading in north Italy (Agriculture Ecosystems and Environment 219 (2016) 1?3(/span>
Rossana Monica Ferraraa Marco Carozzib? Paul Di Tommasic David D. Nelsond Gerardo Fratinie Teresa Bertolinif Vincenzo Magliuloc Marco Acutisg Gianfranco Rana
4、使用量子级联激光光谱仪(QCLS)对COS,CO2,CO和H2O进行连续且高精度大气浓度的测野/strong>
Continuous and high-precision atmospheric concentration measurements of COS CO2 CO and H2O using a quantum cascade laser spectrometer (QCLS) (Atmos. Meas. Tech. 9 5293?314 2016(/span>
Linda M. J. Kooijmans1 Nelly A. M. Uitslag1 Mark S. Zahniser2 David D. Nelson2 Stephen A. Montzka3 and Huilin Chen1?
羰基硫(COS)是总初级生产量的有效示踪剂,因为其可以被植物吸收,类似于CO2的吸收方式。为了探索和验证这种新型示踪剂的应用,我们进行了对COS和CO2的连续且高精度的原位测量。在这项研究中,采用Aerodyne量子级联激光光谱仪(QCLS)与空腔衰荡光谱仪,我们总结了对COS、CO2和CO测量的不同贡献值、/span>
5、集约化经营恢复后草地的温室气体(CO2,CH4和N2O)收支研穵/strong>
Greenhouse gas budget (CO2 CH4 and N2O) of intensively managed grassland following restoration(Global Change Biology (2014) 20 1913?928 doi: 10.1111/gcb.12518(/span>
LUTZ MERBOLD1 WERNER EUGSTER1 JACQUELINE STIEGER1 MARK ZAHNISER2 ,DAVID NELSON2 and NINA BUCHMANN1
6、生态系?大气CO2交换的同位素组成的长期性涡度协方差测量研究
Long-term eddy covariance measurements of the isotopic composition of the ecosystem–atmosphere exchange of CO2 in a temperate forest(Agricultural and Forest Meteorology 181 (2013) 69?4(/span>
R. Wehra,b? J.W. Mungerb D.D. Nelsonc J.B. McManusc M.S. Zahniserc,S.C. Wofsyb S.R. Saleskaa??
7、采用基于QCL的涡度协方差法及推理模型测量泥炭地表 - 大气的氨交换研究
Surface–atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling(Atmos. Chem. Phys. 16 11283?1299 2016(/span>
Undine Z?ll1? Christian Brmmer1 Frederik Schrader1 Christof Ammann2 Andreas Ibrom3 Christophe R. Flechard4 David D. Nelson5 Mark Zahniser5 and Werner L. Kutsch6
8、快速响应气体分析仪在野外条件下进行一氧化二氮通量测量的比较研穵/strong>
Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions(Biogeosciences 12 415?32 2015(/span>
. Rannik1 S. Haapanala1 N. J. Shurpali2 I. Mammarella1 S. Lind2 N. Hyv?nen2 O. Peltola1 M. Zahniser3 P. J. Martikainen2 and T. Vesala1
9、北美生长旺季碳总收入高峰以中西部为**
Peak growing season gross uptake of carbon in North America is largest in the Midwest USA
PUBLISHED ONLINE: 1 MAY 2017 | DOI: 10.1038/NCLIMATE3272
TimothyW. Hilton1* Mary E. Whelan1? Andrew Zumkehr1 Sarika Kulkarni3? Joseph A. Berry2 Ian T. Baker4 Stephen A. Montzka5 Colm Sweeney5 Benjamin R. Miller5 and J. Elliott Campbell1
10、跟踪固碲/strong>
Tracing carbon fixation
NATURE CLIMATE CHANGE | VOL 7 | JUNE 2017
Alexander Knohl and Matthias Cuntz
地表模型在模拟陆地碳循环方面表现出很大的差异 示踪羰基硫化物的大气观测允许选择*实际的模型、/span>
右图所示,两个NOAA监测点(WBI和CAR)的大气COS浓度分布和不同过程的COS降水。通过NOAA监测点的空中观测,对来自陆地和大气运输模式估算出的COS浓度的大气剖面进行了对比。各自流程的数据为COS缩减模型的支撑。较大的降幅出现在光合速率较高的地区,而小幅度下降则表明光合速率低的地区、/span>
11、基于闭路量子级联激光光谱仪的涡度协方差法对亚热带蔬菜田氮氧化物通量测量的适用性研穵/strong>
Applicability of an eddy covariance system based on a close-path quantum cascade laser spectrometer for measuring nitrous oxide fluxes from subtropical vegetable fields
Atmospheric and Oceanic Science Letters 2016 ?
WANG Donga,b WANG Kaia Eugenio DIAZ-PINESc ZHENG Xunhuaa and Klaus BUTTERBACH-BAHLc
12、用于自动箱测量系统
13、测量蒸渗系统的痕量气体
14、车载、机载、轮船等各种环境测量痕量气体
本文参考文献:
[1] . Rannik,S. Haapanala,et al." Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions." Biogeosciences 12 415?32 2015
[2] R. Wehr1 J. W. Munger2 et al. "Seasonality of temperate forest photosynthesis and daytime respiration" NATURE Vol 534 30 June 2016
[3] Narasinha J. Shurpali1,et al." Neglecting diurnal variations leads to uncertainties in terrestrial nitrous oxide emissions" Scientific Reports 6:25739 DOI: 10.1038/srep25739