东华大学的潘鼎教授历经十余年攻关,研制成功了性能稳定、质量合格的航天级高纯粘胶基
碳纤维,不仅填补了国内空白,而且为国家战略武器用碳纤维材料的发展奠定了基础,并且该项目荣获2003年度国家科学技术进步二等奖。
航天级高纯粘胶基碳纤维是导弹大面积防热层的主要骨架材料,其性能关系到导弹的命中精度。导弹在高空的高速飞行以及重返大气层坠落下来的重力加速度,导致导弹外壳表面与空气的摩擦使温度可能达到上万度,任何耐高温的金属在如此高的温度下都将气化,从而造成导弹失去平衡或者是导航系统的失误。在这种情况下,航天级高纯粘胶基碳纤维就成了导弹的“防护服”,它可保护导弹免受高温的“伤害”。过去世界上只有美国和俄罗斯掌握这一技术,而东华大学潘鼎教授领衔的课题组先后攻克了原丝关、工艺关、强度关、排废关,在原丝质量指标确定、稀纬带炭化技术,在有机和无机混合型催化体系、连续纯化工艺、空气介质低温热处理和两段排焦等工艺技术和装置方面取得了一系列原创性成果,解决了六大关键技术难题,使我国成为世界上第三个掌握这一技术的国家。这种粘胶基碳纤维具有高纯度、低密度、高断裂应变、低热导率和耐烧蚀等优良特性,是特种防热层材料,其性能大大超过原碳布路线的产品,可制成多种织物,应用领域也得到拓展,并已在导弹的历次试飞中获得成功应用。
航天级高纯粘胶基碳纤维是导弹大面积防热层的主要骨架材料,其性能关系到导弹的命中精度。导弹在高空的高速飞行以及重返大气层坠落下来的重力加速度,导致导弹外壳表面与空气的摩擦使温度可能达到上万度,任何耐高温的金属在如此高的温度下都将气化,从而造成导弹失去平衡或者是导航系统的失误。在这种情况下,航天级高纯粘胶基碳纤维就成了导弹的“防护服”,它可保护导弹免受高温的“伤害”。过去世界上只有美国和俄罗斯掌握这一技术,而东华大学潘鼎教授领衔的课题组先后攻克了原丝关、工艺关、强度关、排废关,在原丝质量指标确定、稀纬带炭化技术,在有机和无机混合型催化体系、连续纯化工艺、空气介质低温热处理和两段排焦等工艺技术和装置方面取得了一系列原创性成果,解决了六大关键技术难题,使我国成为世界上第三个掌握这一技术的国家。这种粘胶基碳纤维具有高纯度、低密度、高断裂应变、低热导率和耐烧蚀等优良特性,是特种防热层材料,其性能大大超过原碳布路线的产品,可制成多种织物,应用领域也得到拓展,并已在导弹的历次试飞中获得成功应用。